CMake/Modules/CMakeDetermineSystem.cmake

187 lines
7.4 KiB
CMake
Raw Normal View History

#=============================================================================
# Copyright 2002-2009 Kitware, Inc.
#
# Distributed under the OSI-approved BSD License (the "License");
# see accompanying file Copyright.txt for details.
#
# This software is distributed WITHOUT ANY WARRANTY; without even the
# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the License for more information.
#=============================================================================
# (To distribute this file outside of CMake, substitute the full
# License text for the above reference.)
2002-10-22 18:34:07 +04:00
# This module is used by the Makefile generator to determin the following variables:
# CMAKE_SYSTEM_NAME - on unix this is uname -s, for windows it is Windows
# CMAKE_SYSTEM_VERSION - on unix this is uname -r, for windows it is empty
# CMAKE_SYSTEM - ${CMAKE_SYSTEM}-${CMAKE_SYSTEM_VERSION}, for windows: ${CMAKE_SYSTEM}
#
# Expected uname -s output:
#
# AIX AIX
# BSD/OS BSD/OS
# FreeBSD FreeBSD
# HP-UX HP-UX
# IRIX IRIX
# Linux Linux
# GNU/kFreeBSD GNU/kFreeBSD
# NetBSD NetBSD
# OpenBSD OpenBSD
# OFS/1 (Digital Unix) OSF1
# SCO OpenServer 5 SCO_SV
# SCO UnixWare 7 UnixWare
# SCO UnixWare (pre release 7) UNIX_SV
# SCO XENIX Xenix
# Solaris SunOS
# SunOS SunOS
# Tru64 Tru64
# Ultrix ULTRIX
2002-10-22 18:34:07 +04:00
# cygwin CYGWIN_NT-5.1
# MacOSX Darwin
ENH: merge CMake-CrossCompileBasic to HEAD -add a RESULT_VARIABLE to INCLUDE() -add CMAKE_TOOLCHAIN_FILE for specifiying your (potentially crosscompiling) toolchain -have TRY_RUN() complain if you try to use it in crosscompiling mode (which were compiled but cannot run on this system) -use CMAKE_EXECUTABLE_SUFFIX in TRY_RUN(), probably TRY_RUN won't be able to run the executables if they have a different suffix because they are probably crosscompiled, but nevertheless it should be able to find them -make several cmake variables presettable by the user: CMAKE_C/CXX_COMPILER, CMAKE_C/CXX_OUTPUT_EXTENSION, CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_INFO_FILE -support prefix for GNU toolchains (arm-elf-gcc, arm-elf-ar, arm-elf-strip etc.) -move ranlib on OSX from the file command to a command in executed in cmake_install.cmake -add support for stripping during install in cmake_install.cmake -split out cl.cmake from Windows-cl.cmake, first (very incomplete) step to support MS crosscompiling tools -remove stdio.h from the simple C program which checks if the compiler works, since this may not exist for some embedded platforms -create a new CMakeFindBinUtils.cmake which collects the search fro ar, ranlib, strip, ld, link, install_name_tool and other tools like these -add support for CMAKE_FIND_ROOT_PATH for all FIND_XXX commands, which is a list of directories which will be prepended to all search directories, right now as a cmake variable, turning it into a global cmake property may need some more work -remove cmTestTestHandler::TryExecutable(), it's unused -split cmFileCommand::HandleInstall() into slightly smaller functions Alex
2007-05-17 21:20:44 +04:00
# find out on which system cmake runs
if(CMAKE_HOST_UNIX)
find_program(CMAKE_UNAME uname /bin /usr/bin /usr/local/bin )
if(CMAKE_UNAME)
exec_program(uname ARGS -s OUTPUT_VARIABLE CMAKE_HOST_SYSTEM_NAME)
exec_program(uname ARGS -r OUTPUT_VARIABLE CMAKE_HOST_SYSTEM_VERSION)
if(CMAKE_HOST_SYSTEM_NAME MATCHES "Linux|CYGWIN.*")
exec_program(uname ARGS -m OUTPUT_VARIABLE CMAKE_HOST_SYSTEM_PROCESSOR
RETURN_VALUE val)
elseif(CMAKE_HOST_SYSTEM_NAME MATCHES "OpenBSD")
exec_program(arch ARGS -s OUTPUT_VARIABLE CMAKE_HOST_SYSTEM_PROCESSOR
RETURN_VALUE val)
else()
exec_program(uname ARGS -p OUTPUT_VARIABLE CMAKE_HOST_SYSTEM_PROCESSOR
RETURN_VALUE val)
if("${val}" GREATER 0)
exec_program(uname ARGS -m OUTPUT_VARIABLE CMAKE_HOST_SYSTEM_PROCESSOR
RETURN_VALUE val)
endif()
endif()
# check the return of the last uname -m or -p
if("${val}" GREATER 0)
set(CMAKE_HOST_SYSTEM_PROCESSOR "unknown")
endif()
set(CMAKE_UNAME ${CMAKE_UNAME} CACHE INTERNAL "uname command")
# processor may have double quote in the name, and that needs to be removed
string(REGEX REPLACE "\"" "" CMAKE_HOST_SYSTEM_PROCESSOR "${CMAKE_HOST_SYSTEM_PROCESSOR}")
string(REGEX REPLACE "/" "_" CMAKE_HOST_SYSTEM_PROCESSOR "${CMAKE_HOST_SYSTEM_PROCESSOR}")
endif()
else()
if(CMAKE_HOST_WIN32)
set (CMAKE_HOST_SYSTEM_NAME "Windows")
if (DEFINED ENV{PROCESSOR_ARCHITEW6432})
set (CMAKE_HOST_SYSTEM_PROCESSOR "$ENV{PROCESSOR_ARCHITEW6432}")
else()
set (CMAKE_HOST_SYSTEM_PROCESSOR "$ENV{PROCESSOR_ARCHITECTURE}")
endif()
endif()
endif()
# if a toolchain file is used, the user wants to cross compile.
# in this case read the toolchain file and keep the CMAKE_HOST_SYSTEM_*
# variables around so they can be used in CMakeLists.txt.
# In all other cases, the host and target platform are the same.
if(CMAKE_TOOLCHAIN_FILE)
ENH: merge CMake-CrossCompileBasic to HEAD -add a RESULT_VARIABLE to INCLUDE() -add CMAKE_TOOLCHAIN_FILE for specifiying your (potentially crosscompiling) toolchain -have TRY_RUN() complain if you try to use it in crosscompiling mode (which were compiled but cannot run on this system) -use CMAKE_EXECUTABLE_SUFFIX in TRY_RUN(), probably TRY_RUN won't be able to run the executables if they have a different suffix because they are probably crosscompiled, but nevertheless it should be able to find them -make several cmake variables presettable by the user: CMAKE_C/CXX_COMPILER, CMAKE_C/CXX_OUTPUT_EXTENSION, CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_INFO_FILE -support prefix for GNU toolchains (arm-elf-gcc, arm-elf-ar, arm-elf-strip etc.) -move ranlib on OSX from the file command to a command in executed in cmake_install.cmake -add support for stripping during install in cmake_install.cmake -split out cl.cmake from Windows-cl.cmake, first (very incomplete) step to support MS crosscompiling tools -remove stdio.h from the simple C program which checks if the compiler works, since this may not exist for some embedded platforms -create a new CMakeFindBinUtils.cmake which collects the search fro ar, ranlib, strip, ld, link, install_name_tool and other tools like these -add support for CMAKE_FIND_ROOT_PATH for all FIND_XXX commands, which is a list of directories which will be prepended to all search directories, right now as a cmake variable, turning it into a global cmake property may need some more work -remove cmTestTestHandler::TryExecutable(), it's unused -split cmFileCommand::HandleInstall() into slightly smaller functions Alex
2007-05-17 21:20:44 +04:00
# at first try to load it as path relative to the directory from which cmake has been run
include("${CMAKE_BINARY_DIR}/${CMAKE_TOOLCHAIN_FILE}" OPTIONAL RESULT_VARIABLE _INCLUDED_TOOLCHAIN_FILE)
if(NOT _INCLUDED_TOOLCHAIN_FILE)
ENH: merge CMake-CrossCompileBasic to HEAD -add a RESULT_VARIABLE to INCLUDE() -add CMAKE_TOOLCHAIN_FILE for specifiying your (potentially crosscompiling) toolchain -have TRY_RUN() complain if you try to use it in crosscompiling mode (which were compiled but cannot run on this system) -use CMAKE_EXECUTABLE_SUFFIX in TRY_RUN(), probably TRY_RUN won't be able to run the executables if they have a different suffix because they are probably crosscompiled, but nevertheless it should be able to find them -make several cmake variables presettable by the user: CMAKE_C/CXX_COMPILER, CMAKE_C/CXX_OUTPUT_EXTENSION, CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_INFO_FILE -support prefix for GNU toolchains (arm-elf-gcc, arm-elf-ar, arm-elf-strip etc.) -move ranlib on OSX from the file command to a command in executed in cmake_install.cmake -add support for stripping during install in cmake_install.cmake -split out cl.cmake from Windows-cl.cmake, first (very incomplete) step to support MS crosscompiling tools -remove stdio.h from the simple C program which checks if the compiler works, since this may not exist for some embedded platforms -create a new CMakeFindBinUtils.cmake which collects the search fro ar, ranlib, strip, ld, link, install_name_tool and other tools like these -add support for CMAKE_FIND_ROOT_PATH for all FIND_XXX commands, which is a list of directories which will be prepended to all search directories, right now as a cmake variable, turning it into a global cmake property may need some more work -remove cmTestTestHandler::TryExecutable(), it's unused -split cmFileCommand::HandleInstall() into slightly smaller functions Alex
2007-05-17 21:20:44 +04:00
# if the file isn't found there, check the default locations
include("${CMAKE_TOOLCHAIN_FILE}" OPTIONAL RESULT_VARIABLE _INCLUDED_TOOLCHAIN_FILE)
endif()
ENH: merge CMake-CrossCompileBasic to HEAD -add a RESULT_VARIABLE to INCLUDE() -add CMAKE_TOOLCHAIN_FILE for specifiying your (potentially crosscompiling) toolchain -have TRY_RUN() complain if you try to use it in crosscompiling mode (which were compiled but cannot run on this system) -use CMAKE_EXECUTABLE_SUFFIX in TRY_RUN(), probably TRY_RUN won't be able to run the executables if they have a different suffix because they are probably crosscompiled, but nevertheless it should be able to find them -make several cmake variables presettable by the user: CMAKE_C/CXX_COMPILER, CMAKE_C/CXX_OUTPUT_EXTENSION, CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_INFO_FILE -support prefix for GNU toolchains (arm-elf-gcc, arm-elf-ar, arm-elf-strip etc.) -move ranlib on OSX from the file command to a command in executed in cmake_install.cmake -add support for stripping during install in cmake_install.cmake -split out cl.cmake from Windows-cl.cmake, first (very incomplete) step to support MS crosscompiling tools -remove stdio.h from the simple C program which checks if the compiler works, since this may not exist for some embedded platforms -create a new CMakeFindBinUtils.cmake which collects the search fro ar, ranlib, strip, ld, link, install_name_tool and other tools like these -add support for CMAKE_FIND_ROOT_PATH for all FIND_XXX commands, which is a list of directories which will be prepended to all search directories, right now as a cmake variable, turning it into a global cmake property may need some more work -remove cmTestTestHandler::TryExecutable(), it's unused -split cmFileCommand::HandleInstall() into slightly smaller functions Alex
2007-05-17 21:20:44 +04:00
if(_INCLUDED_TOOLCHAIN_FILE)
set(CMAKE_TOOLCHAIN_FILE "${_INCLUDED_TOOLCHAIN_FILE}" CACHE FILEPATH "The CMake toolchain file" FORCE)
else()
message(FATAL_ERROR "Could not find toolchain file: ${CMAKE_TOOLCHAIN_FILE}")
set(CMAKE_TOOLCHAIN_FILE "NOTFOUND" CACHE FILEPATH "The CMake toolchain file" FORCE)
endif()
endif()
ENH: merge CMake-CrossCompileBasic to HEAD -add a RESULT_VARIABLE to INCLUDE() -add CMAKE_TOOLCHAIN_FILE for specifiying your (potentially crosscompiling) toolchain -have TRY_RUN() complain if you try to use it in crosscompiling mode (which were compiled but cannot run on this system) -use CMAKE_EXECUTABLE_SUFFIX in TRY_RUN(), probably TRY_RUN won't be able to run the executables if they have a different suffix because they are probably crosscompiled, but nevertheless it should be able to find them -make several cmake variables presettable by the user: CMAKE_C/CXX_COMPILER, CMAKE_C/CXX_OUTPUT_EXTENSION, CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_INFO_FILE -support prefix for GNU toolchains (arm-elf-gcc, arm-elf-ar, arm-elf-strip etc.) -move ranlib on OSX from the file command to a command in executed in cmake_install.cmake -add support for stripping during install in cmake_install.cmake -split out cl.cmake from Windows-cl.cmake, first (very incomplete) step to support MS crosscompiling tools -remove stdio.h from the simple C program which checks if the compiler works, since this may not exist for some embedded platforms -create a new CMakeFindBinUtils.cmake which collects the search fro ar, ranlib, strip, ld, link, install_name_tool and other tools like these -add support for CMAKE_FIND_ROOT_PATH for all FIND_XXX commands, which is a list of directories which will be prepended to all search directories, right now as a cmake variable, turning it into a global cmake property may need some more work -remove cmTestTestHandler::TryExecutable(), it's unused -split cmFileCommand::HandleInstall() into slightly smaller functions Alex
2007-05-17 21:20:44 +04:00
# if CMAKE_SYSTEM_NAME is here already set, either it comes from a toolchain file
# or it was set via -DCMAKE_SYSTEM_NAME=...
# if that's the case, assume we are crosscompiling
if(CMAKE_SYSTEM_NAME)
if(NOT DEFINED CMAKE_CROSSCOMPILING)
set(CMAKE_CROSSCOMPILING TRUE)
endif()
set(PRESET_CMAKE_SYSTEM_NAME TRUE)
elseif(CMAKE_VS_WINCE_VERSION)
set(CMAKE_SYSTEM_NAME "WindowsCE")
set(CMAKE_SYSTEM_VERSION "${CMAKE_VS_WINCE_VERSION}")
set(CMAKE_SYSTEM_PROCESSOR "${MSVC_C_ARCHITECTURE_ID}")
set(CMAKE_CROSSCOMPILING TRUE)
set(PRESET_CMAKE_SYSTEM_NAME TRUE)
else()
set(CMAKE_SYSTEM_NAME "${CMAKE_HOST_SYSTEM_NAME}")
set(CMAKE_SYSTEM_VERSION "${CMAKE_HOST_SYSTEM_VERSION}")
set(CMAKE_SYSTEM_PROCESSOR "${CMAKE_HOST_SYSTEM_PROCESSOR}")
set(CMAKE_CROSSCOMPILING FALSE)
set(PRESET_CMAKE_SYSTEM_NAME FALSE)
endif()
macro(ADJUST_CMAKE_SYSTEM_VARIABLES _PREFIX)
if(NOT ${_PREFIX}_NAME)
set(${_PREFIX}_NAME "UnknownOS")
endif()
# fix for BSD/OS , remove the /
if(${_PREFIX}_NAME MATCHES BSD.OS)
set(${_PREFIX}_NAME BSDOS)
endif()
# fix for GNU/kFreeBSD, remove the GNU/
if(${_PREFIX}_NAME MATCHES kFreeBSD)
set(${_PREFIX}_NAME kFreeBSD)
endif()
# fix for CYGWIN which has windows version in it
if(${_PREFIX}_NAME MATCHES CYGWIN)
set(${_PREFIX}_NAME CYGWIN)
endif()
# set CMAKE_SYSTEM to the CMAKE_SYSTEM_NAME
set(${_PREFIX} ${${_PREFIX}_NAME})
# if there is a CMAKE_SYSTEM_VERSION then add a -${CMAKE_SYSTEM_VERSION}
if(${_PREFIX}_VERSION)
set(${_PREFIX} ${${_PREFIX}}-${${_PREFIX}_VERSION})
endif()
endmacro()
ADJUST_CMAKE_SYSTEM_VARIABLES(CMAKE_SYSTEM)
ADJUST_CMAKE_SYSTEM_VARIABLES(CMAKE_HOST_SYSTEM)
# this file is also executed from cpack, then we don't need to generate these files
# in this case there is no CMAKE_BINARY_DIR
if(CMAKE_BINARY_DIR)
# write entry to the log file
if(PRESET_CMAKE_SYSTEM_NAME)
file(APPEND ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeOutput.log
"The target system is: ${CMAKE_SYSTEM_NAME} - ${CMAKE_SYSTEM_VERSION} - ${CMAKE_SYSTEM_PROCESSOR}\n")
file(APPEND ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeOutput.log
"The host system is: ${CMAKE_HOST_SYSTEM_NAME} - ${CMAKE_HOST_SYSTEM_VERSION} - ${CMAKE_HOST_SYSTEM_PROCESSOR}\n")
else()
file(APPEND ${CMAKE_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/CMakeOutput.log
"The system is: ${CMAKE_SYSTEM_NAME} - ${CMAKE_SYSTEM_VERSION} - ${CMAKE_SYSTEM_PROCESSOR}\n")
endif()
# if a toolchain file is used, it needs to be included in the configured file,
# so settings done there are also available if they don't go in the cache and in try_compile()
set(INCLUDE_CMAKE_TOOLCHAIN_FILE_IF_REQUIRED)
if(DEFINED CMAKE_TOOLCHAIN_FILE)
set(INCLUDE_CMAKE_TOOLCHAIN_FILE_IF_REQUIRED "include(\"${CMAKE_TOOLCHAIN_FILE}\")")
endif()
# configure variables set in this file for fast reload, the template file is defined at the top of this file
configure_file(${CMAKE_ROOT}/Modules/CMakeSystem.cmake.in
Make platform information files specific to the CMake version At the top of a build tree we configure inside the CMakeFiles directory files such as "CMakeSystem.cmake" and "CMake<lang>Compiler.cmake" to save information detected about the system and compilers in use. The method of detection and the exact results store varies across CMake versions as things improve. This leads to problems when loading files configured by a different version of CMake. Previously we ignored such existing files only if the major.minor part of the CMake version component changed, and depended on the CMakeCache.txt to tell us the last version of CMake that wrote the files. This led to problems if the user deletes the CMakeCache.txt or we add required information to the files in a patch-level release of CMake (still a "feature point" release by modern CMake versioning convention). Ensure that we always have version-consistent platform information files by storing them in a subdirectory named with the CMake version. Every version of CMake will do its own system and compiler identification checks even when a build tree has already been configured by another version of CMake. Stored results will not clobber those from other versions of CMake which may be run again on the same tree in the future. Loaded results will match what the system and language modules expect. Rename the undocumented variable CMAKE_PLATFORM_ROOT_BIN to CMAKE_PLATFORM_INFO_DIR to clarify its purpose. The new variable points at the version-specific directory while the old variable did not.
2012-08-24 16:48:59 +04:00
${CMAKE_PLATFORM_INFO_DIR}/CMakeSystem.cmake
@ONLY)
endif()