When given a non-NULL configuration the GetLocation returned the
location for the given configuration. When given a NULL configuration
the GetLocation method returned a location with the build-system
placeholder for the configuration name. Split the latter use case out
into a separate GetLocationForBuild method and update call sites
accordingly.
Casts from std::string -> cmStdString were high on the list of things
taking up time. Avoid such implicit casts across function calls by just
using std::string everywhere.
The comment that the symbol name is too long is no longer relevant since
modern debuggers alias the templates anyways and the size is a
non-issue since the underlying methods are generated since it's
inherited.
Since commit v2.8.12~437^2~2 (VS: Separate compiler and linker PDB files
2013-04-05) we no longer set /Fd with the PDB_NAME or PDB_OUTPUT_DIRECTORY
properties. Those properties now exclusively handle linker PDB files.
Since STATIC libraries do not link their compiler PDB file becomes more
important. Add new target properties "COMPILE_PDB_NAME[_<CONFIG>]" and
"COMPILE_PDB_OUTPUT_DIRECTORY[_<CONFIG>]" to specify the compiler PDB
file location and pass the value to the MSVC /Fd option.
Add a cmTarget::CompileInfo struct to hold per-configuration information
about the compilation settings in a target. This is different than
cmTarget::OutputInfo because it applies to any targets that can compile
sources even if they do not link or archive.
Replace calls to GetLinkInformation with calls to a method to get only
the target closure, not the link languages etc. The replaced calls
are used while evaluating generator expressions only. This makes
transitive generator expression evaluation independent from
the languages of a target. In a follow-up topic, it will be possible
to make the languages depend on generator expression evaluation, via
evaluation of the SOURCES and INTERFACE_SOURCES target properties.
Because the order of entries is not the same as the final link line,
the order of debug output is different in the RunCMake.CompatibleInterface
test, because the BOOL_PROP7 target property is evaluated first. Adjust
the test to account for that new order.
For the OLD CMP0022 behavior, we need to treat the implementation
as the interface when computing the interface libraries. Make it
possible to do that without computing the link languages by adding
a new GetLinkImplementationLibraries method. Extend the existing
GetLinkImplementation method to populate the languages if the
libraries have already been computed and cached.
Change GetTransitivePropertyTargets to invoke GetLinkInterfaceLibraries
instead of GetLinkInterface. This is key, as it is a method called
by cmGeneratorExpressionEvaluator.
Change the cmGeneratorExpressionEvaluator to invoke
GetLinkImplementationLibraries instead of GetLinkImplementation.
When evaluating the SOURCES property, we will need to be able to access
the link libraries without accessing the link languages, as the languages
depend on the SOURCES.
The callers already skip non-targets, so unify the target search.
Change supporting functions to accept a container of targets instead
of strings where possible.
In a follow-up, the list of sources will become dependent on
the config, so check for existence in cmTarget::GetSourceFiles
instead of up-front with cmGlobalGenerator::CheckTargets().
It accepts a before parameter but is never called with before=true.
compile definitions are sorted by std::set, so it wouldn't make sense
to allow user sorting.
Direct users of IMPORTED targets treat INTERFACE_INCLUDE_DIRECTORIES
as SYSTEM, after commit a63fcbcb (Always consider includes from IMPORTED
targets to be SYSTEM., 2013-08-29). It was intended that transitive
use of an IMPORTED target would have the same behavior, but that
did not work. The implementation processed only direct dependencies
in cmTarget::FinalizeSystemIncludeDirectories.
Implement transitive evaluation of dependencies by traversing the
link interface of each target in the link implementation.
Revert the origin-tracking infrastructure from commit 98093c45 (QtAutoUic:
Add INTERFACE_AUTOUIC_OPTIONS target property., 2013-11-20). Use the
compatibility-tracking for compatible strings instead.
If two different dependencies require different AUTOUIC_OPTIONS,
cmake will now appropriately issue an error.
98093c4 QtAutoUic: Add INTERFACE_AUTOUIC_OPTIONS target property.
02542b4 QtAutoUic: Handle new -include command line parameter.
1242f4e Genex: Add {UPPER,LOWER}_CASE and MAKE_C_IDENTIFIER.
754b321 QtAutogen: Use config without prefix in map key.
Transitively consume the property from linked dependents.
Implement configuration-specific support by following the pattern
set out for compile definitions and includes in cmQtAutoGenerators.
Implement support for origin-tracking with CMAKE_DEBUG_TARGET_PROPERTIES.
This is motivated by the needs of KDE, which provides a separate
translation system based on gettext instead of the Qt linguist
translation system. The Qt uic tool provides command line options
for configuring the method used to translate text, and to add an
include directive to the generated file to provide the method.
http://thread.gmane.org/gmane.comp.kde.devel.frameworks/7930/focus=7992
Implement the interface to provide the uic options as a usage-requirement
on the KI18n target, as designed for KDE.
Diagnostics which check the sanity of exported include paths
previously skipped over any path containing a generator expression.
Introduce a policy to issue an error message in such cases.
The export files created in the OLD behavior are not usable, because
they contain relative paths or paths to the source or build location
which are not suitable for use on installation. CMake will report an
error on import.
This has follow-on effects for other methods and classes. Further
work on making the use of const cmTarget pointers common can be
done, particularly with a view to generate-time methods.
It is never used. Presumably it only exists so that a const char * can
be returned from GetLocation. However, that is getting in the way
now, so use a static std::string instead, which is already a common
pattern in cmake.
When using the boost MPL library, one can set a define to increase
the limit of how many variadic elements should be supported. The
default for BOOST_MPL_LIMIT_VECTOR_SIZE is 20:
http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/refmanual/limit-vector-size.html
If the foo library requires that to be set to 30, and the independent
bar library requires it to be set to 40, consumers of both need to set
it to 40.
add_library(foo INTERFACE)
set_property(TARGET foo PROPERTY INTERFACE_boost_mpl_vector_size 30)
set_property(TARGET foo PROPERTY COMPATIBLE_INTERFACE_NUMBER_MAX boost_mpl_vector_size)
target_compile_definitions(foo INTERFACE BOOST_MPL_LIMIT_VECTOR_SIZE=$<TARGET_PROPERTY:boost_mpl_vector_size>)
add_library(bar INTERFACE)
set_property(TARGET bar PROPERTY INTERFACE_boost_mpl_vector_size 40)
# Technically the next two lines are redundant, but as foo and bar are
# independent, they both set these interfaces.
set_property(TARGET bar PROPERTY COMPATIBLE_INTERFACE_NUMBER_MAX boost_mpl_vector_size)
target_compile_definitions(bar INTERFACE BOOST_MPL_LIMIT_VECTOR_SIZE=$<TARGET_PROPERTY:boost_mpl_vector_size>)
add_executable(user)
target_link_libraries(user foo bar)
Because the TARGET_PROPERTY reads the boost_mpl_vector_size property
from the HEAD of the dependency graph (the user target), and because
that property appears in the COMPATIBLE_INTERFACE_NUMBER_MAX of
the dependencies of the user target, the maximum value for it is
chosen for the compile definition, ie, 40.
There are also use-cases for choosing the minimum value of a number.
In Qt, deprecated API can be disabled by version. Setting the
definition QT_DISABLE_DEPRECATED_BEFORE=0 disables no deprecated
API. Setting it to 0x501000 disables API which was deprecated before
Qt 5.1 etc.
If two dependencies require the use of API which was deprecated in
different Qt versions, then COMPATIBLE_INTERFACE_NUMBER_MIN can be
used to ensure that both can compile.
The result is that the depends of the target are created.
So,
add_library(somelib foo.cpp)
add_library(anotherlib EXCLUDE_FROM_ALL foo.cpp)
add_library(extra EXCLUDE_FROM_ALL foo.cpp)
target_link_libraries(anotherlib extra)
add_library(iface INTERFACE)
target_link_libraries(iface INTERFACE anotherlib)
Executing 'make iface' will result in the anotherlib and extra targets
being made.
Adding a regular executable to the INTERFACE of an INTERFACE_LIBRARY
will not result in the executable being built with 'make iface' because
of the logic in cmComputeTargetDepends::AddTargetDepend.
So far, this is implemented only for the Makefile generator. Other
generators will follow if this feature is possible for them.
Make INTERFACE_LIBRARY targets part of the all target by default.
Test this by building the all target and making the expected library
EXCLUDE_FROM_ALL.
The final location and name of a build-target is not determined
until generate-time. However, reading the LOCATION property from
a target is currently allowed at configure time. Apart from creating
possibly-erroneous results, this has an impact on the implementation
of cmake itself, and prevents some major cleanups from being made.
Disallow reading LOCATION from build-targets with a policy. Port some
existing uses of it in CMake itself to use the TARGET_FILE generator
expression.