This removes the file-wise installation rules for Modules and Templates
and instead installs the whole directories. This approach is much less
error-prone. The old approach was left from before CMake had the
install(DIRECTORY) command.
Since "get_filename_component(... ABSOLUTE)" retrieves the actual case
for existing paths on windows, we need to use an obscure path for mingw.
Otherwise the test can fail just because the case of the paths changes.
Xcode adds extra link directories that point at the build tree, so
detection of implicit link directories is not reliable. Since Fortran
is not supported in Xcode we will not need implicit link information yet
anyway.
This tests the internal CMakeParseImplicitLinkInfo.cmake module to
ensure that implicit link information is extracted correctly. The test
contains many manually verified examples from a variety of systems.
This teaches CMake to detect implicit link information for C, C++, and
Fortran compilers. We detect the implicit linker search directories and
implicit linker options for UNIX-like environments using verbose output
from compiler front-ends. We store results in new variables called
CMAKE_<LANG>_IMPLICIT_LINK_LIBRARIES
CMAKE_<LANG>_IMPLICIT_LINK_DIRECTORIES
The implicit libraries can contain linker flags as well as library
names.
This teaches the language configuration modules to load per-compiler
information for each language using the compiler id but no system name.
They look for modules named "Compiler/<id>-<lang>.cmake". Such modules
may specify compiler flags that do not depend on the platform.
This teaches the command to recognize full windows paths when built on
UNIX. CollapseFullPath knows when the input path is relative better
than FileIsFullPath because the latter is only meant for paths from the
host platform.
Previously each new variable scope (subdirectory or function call) in
the CMake language created a complete copy of the key->value definition
map. This avoids the copy using transitive lookups up the scope stack.
Results of queries answered by parents are stored locally to maintain
locality of reference.
The class cmDefinitions replaces cmMakefile::DefinitionsMap, and is
aware of its enclosing scope. Each scope stores only the definitions
set (or unset!) inside it relative to the enclosing scope.
The command "set(... PARENT_SCOPE)" should never affect the calling
scope. This improves the Function test to check that such calls in a
subdirectory scope affect the parent but not the child.
Generated makefiles for try-compile projects should never use color
output. On MSYS the color escapes end up in the try-compile output text
because there is no way to identify whether the output is going to a
color-capable terminal. Instead we should just always skip color for
try-compile projects.
When this test was renamed from DumpInformation to SystemInformation the
configured header that points the dump executable to the directory
containing information files was broken. No information has been dumped
by this test for 2 years! This fixes it.
Some SGI compilers define _SGI_COMPILER_VERSION in addition to the old
_COMPILER_VERSION preprocessor symbol. It is more distinctive, so we
should check it in case the old one is ever removed.
The SGI preprocessor /usr/lib/cpp produces bad output on this code:
#if 1
A
#elif 1
B
#else
C
#endif
Both 'A' and 'C' appear in the output! We work around the problem by
using '#elif 1' instead of '#else'.
This fixes detection of the SGI Fortran compiler id in -o32 mode.
This factors code out of cmOrderDirectories::CollectOriginalDirectories
into cmOrderDirectories::AddOriginalDirectories. Later a new call will
be added, and this is more readable anyway.