/* * Copyright 1993-2007 NVIDIA Corporation. All rights reserved. * * NOTICE TO USER: * * This source code is subject to NVIDIA ownership rights under U.S. and * international Copyright laws. Users and possessors of this source code * are hereby granted a nonexclusive, royalty-free license to use this code * in individual and commercial software. * * NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE * CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR * IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE * OR PERFORMANCE OF THIS SOURCE CODE. * * U.S. Government End Users. This source code is a "commercial item" as * that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of * "commercial computer software" and "commercial computer software * documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) * and is provided to the U.S. Government only as a commercial end item. * Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through * 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the * source code with only those rights set forth herein. * * Any use of this source code in individual and commercial software must * include, in the user documentation and internal comments to the code, * the above Disclaimer and U.S. Government End Users Notice. */ #include #include #include "fluidsGL_kernels.h" // Texture reference for reading velocity field texture texref; static cudaArray *array = NULL; void setupTexture(int x, int y) { // Wrap mode appears to be the new default texref.filterMode = cudaFilterModeLinear; cudaChannelFormatDesc desc = cudaCreateChannelDesc(); cudaMallocArray(&array, &desc, y, x); cutilCheckMsg("cudaMalloc failed"); } void bindTexture(void) { cudaBindTextureToArray(texref, array); cutilCheckMsg("cudaBindTexture failed"); } void unbindTexture(void) { cudaUnbindTexture(texref); cutilCheckMsg("cudaUnbindTexture failed"); } void updateTexture(cData *data, size_t wib, size_t h, size_t pitch) { cudaMemcpy2DToArray(array, 0, 0, data, pitch, wib, h, cudaMemcpyDeviceToDevice); cutilCheckMsg("cudaMemcpy failed"); } void deleteTexture(void) { cudaFreeArray(array); cutilCheckMsg("cudaFreeArray failed"); } // Note that these kernels are designed to work with arbitrary // domain sizes, not just domains that are multiples of the tile // size. Therefore, we have extra code that checks to make sure // a given thread location falls within the domain boundaries in // both X and Y. Also, the domain is covered by looping over // multiple elements in the Y direction, while there is a one-to-one // mapping between threads in X and the tile size in X. // Nolan Goodnight 9/22/06 // This method adds constant force vectors to the velocity field // stored in 'v' according to v(x,t+1) = v(x,t) + dt * f. __global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy, float fx, float fy, int r, size_t pitch) { int tx = threadIdx.x; int ty = threadIdx.y; cData *fj = (cData*)((char*)v + (ty + spy) * pitch) + tx + spx; cData vterm = *fj; tx -= r; ty -= r; float s = 1.f / (1.f + tx*tx*tx*tx + ty*ty*ty*ty); vterm.x += s * fx; vterm.y += s * fy; *fj = vterm; } // This method performs the velocity advection step, where we // trace velocity vectors back in time to update each grid cell. // That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear // interpolation in the velocity space. __global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx, int pdx, int dy, float dt, int lb) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; cData vterm, ploc; float vxterm, vyterm; // gtidx is the domain location in x for this thread if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fj = fi * pdx + gtidx; vterm = tex2D(texref, (float)gtidx, (float)fi); ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx); ploc.y = (fi + 0.5f) - (dt * vterm.y * dy); vterm = tex2D(texref, ploc.x, ploc.y); vxterm = vterm.x; vyterm = vterm.y; vx[fj] = vxterm; vy[fj] = vyterm; } } } } // This method performs velocity diffusion and forces mass conservation // in the frequency domain. The inputs 'vx' and 'vy' are complex-valued // arrays holding the Fourier coefficients of the velocity field in // X and Y. Diffusion in this space takes a simple form described as: // v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity, // and k is the wavenumber. The projection step forces the Fourier // velocity vectors to be orthogonal to the vectors for each // wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2. __global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt, float visc, int lb) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; cData xterm, yterm; // gtidx is the domain location in x for this thread if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fj = fi * dx + gtidx; xterm = vx[fj]; yterm = vy[fj]; // Compute the index of the wavenumber based on the // data order produced by a standard NN FFT. int iix = gtidx; int iiy = (fi>dy/2)?(fi-(dy)):fi; // Velocity diffusion float kk = (float)(iix * iix + iiy * iiy); // k^2 float diff = 1.f / (1.f + visc * dt * kk); xterm.x *= diff; xterm.y *= diff; yterm.x *= diff; yterm.y *= diff; // Velocity projection if (kk > 0.f) { float rkk = 1.f / kk; // Real portion of velocity projection float rkp = (iix * xterm.x + iiy * yterm.x); // Imaginary portion of velocity projection float ikp = (iix * xterm.y + iiy * yterm.y); xterm.x -= rkk * rkp * iix; xterm.y -= rkk * ikp * iix; yterm.x -= rkk * rkp * iiy; yterm.y -= rkk * ikp * iiy; } vx[fj] = xterm; vy[fj] = yterm; } } } } // This method updates the velocity field 'v' using the two complex // arrays from the previous step: 'vx' and 'vy'. Here we scale the // real components by 1/(dx*dy) to account for an unnormalized FFT. __global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx, int pdx, int dy, int lb, size_t pitch) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; float vxterm, vyterm; cData nvterm; // gtidx is the domain location in x for this thread if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fjr = fi * pdx + gtidx; vxterm = vx[fjr]; vyterm = vy[fjr]; // Normalize the result of the inverse FFT float scale = 1.f / (dx * dy); nvterm.x = vxterm * scale; nvterm.y = vyterm * scale; cData *fj = (cData*)((char*)v + fi * pitch) + gtidx; *fj = nvterm; } } // If this thread is inside the domain in Y } // If this thread is inside the domain in X } // This method updates the particles by moving particle positions // according to the velocity field and time step. That is, for each // particle: p(t+1) = p(t) + dt * v(p(t)). __global__ void advectParticles_k(cData *part, cData *v, int dx, int dy, float dt, int lb, size_t pitch) { int gtidx = blockIdx.x * blockDim.x + threadIdx.x; int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb; int p; // gtidx is the domain location in x for this thread cData pterm, vterm; if (gtidx < dx) { for (p = 0; p < lb; p++) { // fi is the domain location in y for this thread int fi = gtidy + p; if (fi < dy) { int fj = fi * dx + gtidx; pterm = part[fj]; int xvi = ((int)(pterm.x * dx)); int yvi = ((int)(pterm.y * dy)); vterm = *((cData*)((char*)v + yvi * pitch) + xvi); pterm.x += dt * vterm.x; pterm.x = pterm.x - (int)pterm.x; pterm.x += 1.f; pterm.x = pterm.x - (int)pterm.x; pterm.y += dt * vterm.y; pterm.y = pterm.y - (int)pterm.y; pterm.y += 1.f; pterm.y = pterm.y - (int)pterm.y; part[fj] = pterm; } } // If this thread is inside the domain in Y } // If this thread is inside the domain in X }