CMake/Source/cmTarget.cxx

1312 lines
42 KiB
C++

/*=========================================================================
Program: CMake - Cross-Platform Makefile Generator
Module: $RCSfile$
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) 2002 Kitware, Inc., Insight Consortium. All rights reserved.
See Copyright.txt or http://www.cmake.org/HTML/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "cmTarget.h"
#include "cmMakefile.h"
#include "cmSourceFile.h"
#include "cmLocalGenerator.h"
#include "cmGlobalGenerator.h"
#include <map>
#include <set>
#include <queue>
#include <stdlib.h> // required for atof
//----------------------------------------------------------------------------
cmTarget::cmTarget()
{
m_Makefile = 0;
m_LinkLibrariesAnalyzed = false;
m_LinkDirectoriesComputed = false;
}
void cmTarget::SetType(TargetType type, const char* name)
{
m_Name = name;
// only add dependency information for library targets
m_TargetType = type;
if(m_TargetType >= STATIC_LIBRARY && m_TargetType <= MODULE_LIBRARY) {
m_RecordDependencies = true;
} else {
m_RecordDependencies = false;
}
}
void cmTarget::TraceVSDependencies(std::string projFile,
cmMakefile *makefile)
{
// get the classes from the source lists then add them to the groups
std::vector<cmSourceFile*> & classes = this->GetSourceFiles();
// use a deck to keep track of processed source files
std::queue<std::string> srcFilesToProcess;
std::set<cmStdString> srcFilesQueued;
std::string name;
std::vector<cmSourceFile*> newClasses;
for(std::vector<cmSourceFile*>::const_iterator i = classes.begin();
i != classes.end(); ++i)
{
name = (*i)->GetSourceName();
if ((*i)->GetSourceExtension() != "rule")
{
name += ".";
name += (*i)->GetSourceExtension();
}
srcFilesToProcess.push(name);
srcFilesQueued.insert(name);
// does this sourcefile have object depends on it?
// If so then add them as well
const char* additionalDeps = (*i)->GetProperty("OBJECT_DEPENDS");
std::vector<std::string> depends = (*i)->GetDepends();
if (additionalDeps || depends.size())
{
if(additionalDeps)
{
cmSystemTools::ExpandListArgument(additionalDeps, depends);
}
for(std::vector<std::string>::iterator id = depends.begin();
id != depends.end(); ++id)
{
// if there is a custom rule to generate that dependency
// then add it to the list
cmSourceFile* outsf =
makefile->GetSourceFileWithOutput(id->c_str());
// if a source file was found then add it
if (outsf &&
(std::find(classes.begin(),classes.end(),outsf) == classes.end()) &&
(std::find(newClasses.begin(),newClasses.end(),outsf) == newClasses.end()))
{
// then add the source to this target and add it to the queue
newClasses.push_back(outsf);
name = outsf->GetSourceName();
if (outsf->GetSourceExtension() != "rule")
{
name += ".";
name += outsf->GetSourceExtension();
}
std::string temp =
cmSystemTools::GetFilenamePath(outsf->GetFullPath());
temp += "/";
temp += name;
// if it hasn't been processed
if (srcFilesQueued.find(temp) == srcFilesQueued.end())
{
srcFilesToProcess.push(temp);
srcFilesQueued.insert(temp);
}
}
}
}
}
for(std::vector<cmSourceFile*>::const_iterator i = newClasses.begin();
i != newClasses.end(); ++i)
{
classes.push_back(*i);
}
// add in the project file itself
if (projFile.size())
{
srcFilesToProcess.push(projFile);
srcFilesQueued.insert(projFile);
}
// add in the library depends for custom targets
if (this->GetType() == cmTarget::UTILITY)
{
for (std::vector<cmCustomCommand>::iterator ic =
this->GetPostBuildCommands().begin();
ic != this->GetPostBuildCommands().end(); ++ic)
{
cmCustomCommand &c = *ic;
for (std::vector<std::string>::const_iterator i = c.GetDepends().begin();
i != c.GetDepends().end(); ++i)
{
srcFilesToProcess.push(*i);
srcFilesQueued.insert(*i);
}
}
}
while (!srcFilesToProcess.empty())
{
// is this source the output of a custom command
cmSourceFile* outsf =
makefile->GetSourceFileWithOutput(srcFilesToProcess.front().c_str());
if (outsf)
{
// is it not already in the target?
if (std::find(classes.begin(),classes.end(),outsf) == classes.end())
{
// then add the source to this target and add it to the queue
classes.push_back(outsf);
name = outsf->GetSourceName();
if (outsf->GetSourceExtension() != "rule")
{
name += ".";
name += outsf->GetSourceExtension();
}
std::string temp =
cmSystemTools::GetFilenamePath(outsf->GetFullPath());
temp += "/";
temp += name;
// if it hasn't been processed
if (srcFilesQueued.find(temp) == srcFilesQueued.end())
{
srcFilesToProcess.push(temp);
srcFilesQueued.insert(temp);
}
}
// add its dependencies to the list to check
unsigned int i;
for (i = 0; i < outsf->GetCustomCommand()->GetDepends().size(); ++i)
{
std::string dep = cmSystemTools::GetFilenameName(
outsf->GetCustomCommand()->GetDepends()[i]);
if (cmSystemTools::GetFilenameLastExtension(dep) == ".exe")
{
dep = cmSystemTools::GetFilenameWithoutLastExtension(dep);
}
// watch for target dependencies,
if(m_Makefile->GetLocalGenerator()->GetGlobalGenerator()->FindTarget(0, dep.c_str()))
{
// add the depend as a utility on the target
this->AddUtility(dep.c_str());
}
else
{
if (srcFilesQueued.find(outsf->GetCustomCommand()->GetDepends()[i])
== srcFilesQueued.end())
{
srcFilesToProcess.push(outsf->GetCustomCommand()->GetDepends()[i]);
srcFilesQueued.insert(outsf->GetCustomCommand()->GetDepends()[i]);
}
}
}
}
// finished with this SF move to the next
srcFilesToProcess.pop();
}
// mark all custom commands in the targets list of source files as used.
for(std::vector<cmSourceFile*>::iterator i = m_SourceFiles.begin();
i != m_SourceFiles.end(); ++i)
{
cmCustomCommand* cc = (*i)->GetCustomCommand();
if(cc)
{
cc->Used();
}
}
}
void cmTarget::GenerateSourceFilesFromSourceLists( cmMakefile &mf)
{
// this is only done for non install targets
if ((this->m_TargetType == cmTarget::INSTALL_FILES)
|| (this->m_TargetType == cmTarget::INSTALL_PROGRAMS))
{
return;
}
// for each src lists add the classes
for (std::vector<std::string>::const_iterator s = m_SourceLists.begin();
s != m_SourceLists.end(); ++s)
{
int done = 0;
// replace any variables
std::string temps = *s;
mf.ExpandVariablesInString(temps);
// Next if one wasn't found then assume it is a single class
// check to see if it is an existing source file
if (!done)
{
cmSourceFile* sourceFile = mf.GetSource(temps.c_str());
if ( sourceFile )
{
m_SourceFiles.push_back(sourceFile);
done = 1;
}
}
// if we still are not done, try to create the SourceFile structure
if (!done)
{
cmSourceFile file;
file.SetProperty("ABSTRACT","0");
file.SetName(temps.c_str(), mf.GetCurrentDirectory(),
mf.GetSourceExtensions(),
mf.GetHeaderExtensions());
m_SourceFiles.push_back(mf.AddSource(file));
}
}
// expand any link library variables whle we are at it
LinkLibraries::iterator p = m_LinkLibraries.begin();
for (;p != m_LinkLibraries.end(); ++p)
{
mf.ExpandVariablesInString(p->first, true, true);
}
}
void cmTarget::MergeLinkLibraries( cmMakefile& mf,
const char *selfname,
const LinkLibraries& libs )
{
// Only add on libraries we haven't added on before.
// Assumption: the global link libraries could only grow, never shrink
LinkLibraries::const_iterator i = libs.begin();
i += m_PrevLinkedLibraries.size();
for( ; i != libs.end(); ++i )
{
// We call this so that the dependencies get written to the cache
this->AddLinkLibrary( mf, selfname, i->first.c_str(), i->second );
}
m_PrevLinkedLibraries = libs;
}
//----------------------------------------------------------------------------
void cmTarget::AddLinkDirectory(const char* d)
{
// Make sure we don't add unnecessary search directories.
if(std::find(m_ExplicitLinkDirectories.begin(),
m_ExplicitLinkDirectories.end(), d)
== m_ExplicitLinkDirectories.end() )
{
m_ExplicitLinkDirectories.push_back( d );
m_LinkDirectoriesComputed = false;
}
}
//----------------------------------------------------------------------------
const std::vector<std::string>& cmTarget::GetLinkDirectories()
{
// Make sure all library dependencies have been analyzed.
if(!m_LinkLibrariesAnalyzed && !m_LinkLibraries.empty())
{
cmSystemTools::Error(
"cmTarget::GetLinkDirectories called before cmTarget::AnalyzeLibDependencies on target ",
m_Name.c_str());
}
// Make sure the complete set of link directories has been computed.
if(!m_LinkDirectoriesComputed)
{
// Compute the full set of link directories including the
// locations of targets that have been linked in. Start with the
// link directories given explicitly.
m_LinkDirectories = m_ExplicitLinkDirectories;
for(LinkLibraries::iterator ll = m_LinkLibraries.begin();
ll != m_LinkLibraries.end(); ++ll)
{
// If this library is a CMake target then add its location as a
// link directory.
std::string lib = ll->first;
cmTarget* tgt = 0;
if(m_Makefile && m_Makefile->GetLocalGenerator() &&
m_Makefile->GetLocalGenerator()->GetGlobalGenerator())
{
tgt = (m_Makefile->GetLocalGenerator()->GetGlobalGenerator()
->FindTarget(0, lib.c_str()));
}
if(tgt)
{
// Add the directory only if it is not already present. This
// is an N^2 algorithm for adding the directories, but N
// should not get very big.
const char* libpath = tgt->GetDirectory();
if(std::find(m_LinkDirectories.begin(), m_LinkDirectories.end(),
libpath) == m_LinkDirectories.end())
{
m_LinkDirectories.push_back(libpath);
}
}
}
// The complete set of link directories has now been computed.
m_LinkDirectoriesComputed = true;
}
// Return the complete set of link directories.
return m_LinkDirectories;
}
void cmTarget::ClearDependencyInformation( cmMakefile& mf, const char* target )
{
// Clear the dependencies. The cache variable must exist iff we are
// recording dependency information for this target.
std::string depname = target;
depname += "_LIB_DEPENDS";
if (m_RecordDependencies)
{
mf.AddCacheDefinition(depname.c_str(), "",
"Dependencies for target", cmCacheManager::STATIC);
}
else
{
if (mf.GetDefinition( depname.c_str() ))
{
std::string message = "Target ";
message += target;
message += " has dependency information when it shouldn't.\n";
message += "Your cache is probably stale. Please remove the entry\n ";
message += depname;
message += "\nfrom the cache.";
cmSystemTools::Error( message.c_str() );
}
}
}
void cmTarget::AddLinkLibrary(const std::string& lib,
LinkLibraryType llt)
{
this->AddFramework(lib.c_str(), llt);
m_LinkLibraries.push_back( std::pair<std::string, cmTarget::LinkLibraryType>(lib,llt) );
}
bool cmTarget::AddFramework(const std::string& libname, LinkLibraryType llt)
{
(void)llt; // TODO: What is this?
if(cmSystemTools::IsPathToFramework(libname.c_str()))
{
std::string frameworkDir = libname;
frameworkDir += "/../";
frameworkDir = cmSystemTools::CollapseFullPath(frameworkDir.c_str());
std::vector<std::string>::iterator i =
std::find(m_Frameworks.begin(),
m_Frameworks.end(), frameworkDir);
if(i == m_Frameworks.end())
{
m_Frameworks.push_back(frameworkDir);
}
return true;
}
return false;
}
void cmTarget::AddLinkLibrary(cmMakefile& mf,
const char *target, const char* lib,
LinkLibraryType llt)
{
// Never add a self dependency, even if the user asks for it.
if(strcmp( target, lib ) == 0)
{
return;
}
this->AddFramework(lib, llt);
m_LinkLibraries.push_back( std::pair<std::string, cmTarget::LinkLibraryType>(lib,llt) );
if(llt != cmTarget::GENERAL)
{
// Store the library's link type in the cache. If it is a
// conflicting type then assume it is always used. This is the
// case when the user sets the cache entries for debug and
// optimized versions of the library to the same value.
std::string linkTypeName = lib;
linkTypeName += "_LINK_TYPE";
switch(llt)
{
case cmTarget::DEBUG:
{
const char* def = mf.GetDefinition(linkTypeName.c_str());
if(!def || strcmp(def, "debug") == 0)
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"debug", "Library is used for debug links only",
cmCacheManager::STATIC);
}
else
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"general", "Library is used for both debug and optimized links",
cmCacheManager::STATIC);
}
}
break;
case cmTarget::OPTIMIZED:
{
const char* def = mf.GetDefinition(linkTypeName.c_str());
if(!def || strcmp(def, "optimized") == 0)
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"optimized", "Library is used for debug links only",
cmCacheManager::STATIC);
}
else
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"general", "Library is used for both debug and optimized links",
cmCacheManager::STATIC);
}
}
break;
case cmTarget::GENERAL:
break;
}
}
// Add the explicit dependency information for this target. This is
// simply a set of libraries separated by ";". There should always
// be a trailing ";". These library names are not canonical, in that
// they may be "-framework x", "-ly", "/path/libz.a", etc.
// We shouldn't remove duplicates here because external libraries
// may be purposefully duplicated to handle recursive dependencies,
// and we removing one instance will break the link line. Duplicates
// will be appropriately eliminated at emit time.
if(m_RecordDependencies)
{
std::string targetEntry = target;
targetEntry += "_LIB_DEPENDS";
std::string dependencies;
const char* old_val = mf.GetDefinition( targetEntry.c_str() );
if( old_val )
{
dependencies += old_val;
}
dependencies += lib;
dependencies += ";";
mf.AddCacheDefinition( targetEntry.c_str(), dependencies.c_str(),
"Dependencies for the target",
cmCacheManager::STATIC );
}
}
void
cmTarget::AnalyzeLibDependencies( const cmMakefile& mf )
{
// There are two key parts of the dependency analysis: (1)
// determining the libraries in the link line, and (2) constructing
// the dependency graph for those libraries.
//
// The latter is done using the cache entries that record the
// dependencies of each library.
//
// The former is a more thorny issue, since it is not clear how to
// determine if two libraries listed on the link line refer to the a
// single library or not. For example, consider the link "libraries"
// /usr/lib/libtiff.so -ltiff
// Is this one library or two? The solution implemented here is the
// simplest (and probably the only practical) one: two libraries are
// the same if their "link strings" are identical. Thus, the two
// libraries above are considered distinct. This also means that for
// dependency analysis to be effective, the CMake user must specify
// libraries build by his project without using any linker flags or
// file extensions. That is,
// LINK_LIBRARIES( One Two )
// instead of
// LINK_LIBRARIES( -lOne ${binarypath}/libTwo.a )
// The former is probably what most users would do, but it never
// hurts to document the assumptions. :-) Therefore, in the analysis
// code, the "canonical name" of a library is simply its name as
// given to a LINK_LIBRARIES command.
//
// Also, we will leave the original link line intact; we will just add any
// dependencies that were missing.
//
// There is a problem with recursive external libraries
// (i.e. libraries with no dependency information that are
// recursively dependent). We must make sure that the we emit one of
// the libraries twice to satisfy the recursion, but we shouldn't
// emit it more times than necessary. In particular, we must make
// sure that handling this improbable case doesn't cost us when
// dealing with the common case of non-recursive libraries. The
// solution is to assume that the recursion is satisfied at one node
// of the dependency tree. To illustrate, assume libA and libB are
// extrenal and mutually dependent. Suppose libX depends on
// libA, and libY on libA and libX. Then
// TARGET_LINK_LIBRARIES( Y X A B A )
// TARGET_LINK_LIBRARIES( X A B A )
// TARGET_LINK_LIBRARIES( Exec Y )
// would result in "-lY -lX -lA -lB -lA". This is the correct way to
// specify the dependencies, since the mutual dependency of A and B
// is resolved *every time libA is specified*.
//
// Something like
// TARGET_LINK_LIBRARIES( Y X A B A )
// TARGET_LINK_LIBRARIES( X A B )
// TARGET_LINK_LIBRARIES( Exec Y )
// would result in "-lY -lX -lA -lB", and the mutual dependency
// information is lost. This is because in some case (Y), the mutual
// dependency of A and B is listed, while in another other case (X),
// it is not. Depending on which line actually emits A, the mutual
// dependency may or may not be on the final link line. We can't
// handle this pathalogical case cleanly without emitting extra
// libraries for the normal cases. Besides, the dependency
// information for X is wrong anyway: if we build an executable
// depending on X alone, we would not have the mutual dependency on
// A and B resolved.
//
// IMPROVEMENTS:
// -- The current algorithm will not always pick the "optimal" link line
// when recursive dependencies are present. It will instead break the
// cycles at an aribtrary point. The majority of projects won't have
// cyclic dependencies, so this is probably not a big deal. Note that
// the link line is always correct, just not necessary optimal.
typedef std::vector< std::string > LinkLine;
// The dependency map.
DependencyMap dep_map;
// 1. Build the dependency graph
//
for(LinkLibraries::reverse_iterator lib = m_LinkLibraries.rbegin();
lib != m_LinkLibraries.rend(); ++lib)
{
this->GatherDependencies( mf, lib->first, dep_map );
}
// 2. Remove any dependencies that are already satisfied in the original
// link line.
//
for(LinkLibraries::iterator lib = m_LinkLibraries.begin();
lib != m_LinkLibraries.end(); ++lib)
{
for( LinkLibraries::iterator lib2 = lib;
lib2 != m_LinkLibraries.end(); ++lib2)
{
DeleteDependency( dep_map, lib->first, lib2->first );
}
}
// 3. Create the new link line by simply emitting any dependencies that are
// missing. Start from the back and keep adding.
//
std::set<cmStdString> done, visited;
std::vector<std::string> newLinkLibraries;
for(LinkLibraries::reverse_iterator lib = m_LinkLibraries.rbegin();
lib != m_LinkLibraries.rend(); ++lib)
{
// skip zero size library entries, this may happen
// if a variable expands to nothing.
if (lib->first.size() != 0)
{
Emit( lib->first, dep_map, done, visited, newLinkLibraries );
}
}
// 4. Add the new libraries to the link line.
//
for( std::vector<std::string>::reverse_iterator k = newLinkLibraries.rbegin();
k != newLinkLibraries.rend(); ++k )
{
std::string linkType = *k;
linkType += "_LINK_TYPE";
cmTarget::LinkLibraryType llt = cmTarget::GENERAL;
const char* linkTypeString = mf.GetDefinition( linkType.c_str() );
if(linkTypeString)
{
if(strcmp(linkTypeString, "debug") == 0)
{
llt = cmTarget::DEBUG;
}
if(strcmp(linkTypeString, "optimized") == 0)
{
llt = cmTarget::OPTIMIZED;
}
}
m_LinkLibraries.push_back( std::make_pair(*k,llt) );
}
m_LinkLibrariesAnalyzed = true;
}
void cmTarget::InsertDependency( DependencyMap& depMap,
const cmStdString& lib,
const cmStdString& dep )
{
depMap[lib].push_back(dep);
}
void cmTarget::DeleteDependency( DependencyMap& depMap,
const cmStdString& lib,
const cmStdString& dep )
{
// Make sure there is an entry in the map for lib. If so, delete all
// dependencies to dep. There may be repeated entries because of
// external libraries that are specified multiple times.
DependencyMap::iterator map_itr = depMap.find( lib );
if( map_itr != depMap.end() )
{
DependencyList& depList = map_itr->second;
DependencyList::iterator itr;
while( (itr = std::find(depList.begin(), depList.end(), dep)) != depList.end() )
{
depList.erase( itr );
}
}
}
void cmTarget::Emit( const std::string& lib,
const DependencyMap& dep_map,
std::set<cmStdString>& emitted,
std::set<cmStdString>& visited,
std::vector<std::string>& link_line )
{
// It's already been emitted
if( emitted.find(lib) != emitted.end() )
return;
// Emit the dependencies only if this library node hasn't been
// visited before. If it has, then we have a cycle. The recursion
// that got us here should take care of everything.
if( visited.insert(lib).second )
{
if( dep_map.find(lib) != dep_map.end() ) // does it have dependencies?
{
const DependencyList& dep_on = dep_map.find( lib )->second;
DependencyList::const_reverse_iterator i;
// To cater for recursive external libraries, we must emit
// duplicates on this link line *unless* they were emitted by
// some other node, in which case we assume that the recursion
// was resolved then. We making the simplifying assumption that
// any duplicates on a single link line are on purpose, and must
// be preserved.
// This variable will keep track of the libraries that were
// emitted directory from the current node, and not from a
// recursive call. This way, if we come across a library that
// has already been emitted, we repeat it iff it has been
// emitted here.
std::set<cmStdString> emitted_here;
for( i = dep_on.rbegin(); i != dep_on.rend(); ++i )
{
if( emitted_here.find(*i) != emitted_here.end() )
{
// a repeat. Must emit.
emitted.insert(*i);
link_line.push_back( *i );
}
else
{
// Emit only if no-one else has
if( emitted.find(*i) == emitted.end() )
{
// emit dependencies
Emit( *i, dep_map, emitted, visited, link_line );
// emit self
emitted.insert(*i);
emitted_here.insert(*i);
link_line.push_back( *i );
}
}
}
}
}
}
void cmTarget::GatherDependencies( const cmMakefile& mf,
const std::string& lib,
DependencyMap& dep_map )
{
// If the library is already in the dependency map, then it has
// already been fully processed.
if( dep_map.find(lib) != dep_map.end() )
return;
const char* deps = mf.GetDefinition( (lib+"_LIB_DEPENDS").c_str() );
if( deps && strcmp(deps,"") != 0 )
{
// Make sure this library is in the map, even if it has an empty
// set of dependencies. This distinguishes the case of explicitly
// no dependencies with that of unspecified dependencies.
dep_map[lib];
// Parse the dependency information, which is simply a set of
// libraries separated by ";". There is always a trailing ";".
std::string depline = deps;
std::string::size_type start = 0;
std::string::size_type end;
end = depline.find( ";", start );
while( end != std::string::npos )
{
std::string l = depline.substr( start, end-start );
if( l.size() != 0 )
{
InsertDependency( dep_map, lib, l );
GatherDependencies( mf, l, dep_map );
}
start = end+1; // skip the ;
end = depline.find( ";", start );
}
DeleteDependency( dep_map, lib, lib); // cannot depend on itself
}
}
void cmTarget::SetProperty(const char* prop, const char* value)
{
if (!prop)
{
return;
}
if (!value)
{
value = "NOTFOUND";
}
m_Properties[prop] = value;
}
const char* cmTarget::GetDirectory()
{
switch( this->GetType() )
{
case cmTarget::STATIC_LIBRARY:
case cmTarget::MODULE_LIBRARY:
case cmTarget::SHARED_LIBRARY:
m_Directory = m_Makefile->GetSafeDefinition("LIBRARY_OUTPUT_PATH");
break;
case cmTarget::EXECUTABLE:
m_Directory = m_Makefile->GetSafeDefinition("EXECUTABLE_OUTPUT_PATH");
break;
default:
return 0;
}
if(m_Directory.empty())
{
m_Directory = m_Makefile->GetStartOutputDirectory();
}
return m_Directory.c_str();
}
const char* cmTarget::GetLocation(const char* config)
{
m_Location = this->GetDirectory();
if(!m_Location.empty())
{
m_Location += "/";
}
const char* cfgid = m_Makefile->GetDefinition("CMAKE_CFG_INTDIR");
if(cfgid && strcmp(cfgid, ".") != 0)
{
m_Location += cfgid;
m_Location += "/";
}
m_Location += this->GetFullName(config);
return m_Location.c_str();
}
void cmTarget::UpdateLocation()
{
// make sure we have a makefile
if (!m_Makefile)
{
return;
}
// set the LOCATION property of the target
std::string target_location;
switch( this->GetType() )
{
case cmTarget::STATIC_LIBRARY:
case cmTarget::MODULE_LIBRARY:
case cmTarget::SHARED_LIBRARY:
target_location =
m_Makefile->GetSafeDefinition("LIBRARY_OUTPUT_PATH");
break;
case cmTarget::EXECUTABLE:
target_location =
m_Makefile->GetSafeDefinition("EXECUTABLE_OUTPUT_PATH");
break;
default:
return;
}
if ( target_location.size() == 0 )
{
target_location += m_Makefile->GetStartOutputDirectory();
}
if ( target_location.size() > 0 )
{
target_location += "/";
}
const char* cfgid = m_Makefile->GetDefinition("CMAKE_CFG_INTDIR");
if ( cfgid && strcmp(cfgid, ".") != 0 )
{
target_location += cfgid;
target_location += "/";
}
target_location += this->GetFullName();
this->SetProperty("LOCATION",target_location.c_str());
}
const char *cmTarget::GetProperty(const char* prop)
{
// watch for special "computed" properties that are dependent on other
// properties or variables, always recompute them
if (!strcmp(prop,"LOCATION"))
{
this->UpdateLocation();
}
// the type property returns what type the target is
if (!strcmp(prop,"TYPE"))
{
switch( this->GetType() )
{
case cmTarget::STATIC_LIBRARY:
return "STATIC_LIBRARY";
break;
case cmTarget::MODULE_LIBRARY:
return "MODULE_LIBRARY";
break;
case cmTarget::SHARED_LIBRARY:
return "SHARED_LIBRARY";
break;
case cmTarget::EXECUTABLE:
return "EXECUTABLE";
break;
case cmTarget::UTILITY:
return "UTILITY";
break;
case cmTarget::INSTALL_FILES:
return "INSTALL_FILES";
break;
case cmTarget::INSTALL_PROGRAMS:
return "INSTALL_PROGRAMS";
break;
}
return 0;
}
std::map<cmStdString,cmStdString>::const_iterator i =
m_Properties.find(prop);
if (i != m_Properties.end())
{
return i->second.c_str();
}
return 0;
}
bool cmTarget::GetPropertyAsBool(const char* prop)
{
std::map<cmStdString,cmStdString>::const_iterator i =
m_Properties.find(prop);
if (i != m_Properties.end())
{
return cmSystemTools::IsOn(i->second.c_str());
}
return false;
}
const char* cmTarget::GetLinkerLanguage(cmGlobalGenerator* gg)
{
if(this->GetProperty("HAS_CXX"))
{
const_cast<cmTarget*>(this)->SetProperty("LINKER_LANGUAGE", "CXX");
}
const char* linkerLang = this->GetProperty("LINKER_LANGUAGE");
if(linkerLang)
{
return linkerLang;
}
std::set<cmStdString> languages;
for(std::vector<cmSourceFile*>::const_iterator i = m_SourceFiles.begin();
i != m_SourceFiles.end(); ++i)
{
const char* lang =
gg->GetLanguageFromExtension((*i)->GetSourceExtension().c_str());
if(lang)
{
languages.insert(lang);
}
}
if(languages.size() == 0)
{
return 0;
}
if(languages.size() == 1)
{
const_cast<cmTarget*>(this)->SetProperty("LINKER_LANGUAGE", languages.begin()->c_str());
return this->GetProperty("LINKER_LANGUAGE");
}
const char* prefLang = 0;
for(std::set<cmStdString>::const_iterator s = languages.begin();
s != languages.end(); ++s)
{
const char* lpref = gg->GetLinkerPreference(s->c_str());
if(lpref[0] == 'P')
{
if(prefLang && !(*s == prefLang))
{
std::string m = "Error Target: ";
m += m_Name + " Contains more than one Prefered language: ";
m += *s;
m += " and ";
m += prefLang;
m += "\nYou must set the LINKER_LANGUAGE property for this target.";
cmSystemTools::Error(m.c_str());
}
else
{
prefLang = s->c_str();
}
}
}
if(!prefLang)
{
prefLang = languages.begin()->c_str();
}
const_cast<cmTarget*>(this)->SetProperty("LINKER_LANGUAGE", prefLang);
return this->GetProperty("LINKER_LANGUAGE");
}
const char* cmTarget::GetCreateRuleVariable()
{
switch(this->GetType())
{
case cmTarget::STATIC_LIBRARY:
return "_CREATE_STATIC_LIBRARY";
case cmTarget::SHARED_LIBRARY:
return "_CREATE_SHARED_LIBRARY";
case cmTarget::MODULE_LIBRARY:
return "_CREATE_SHARED_MODULE";
case cmTarget::EXECUTABLE:
return "_LINK_EXECUTABLE";
case cmTarget::UTILITY:
case cmTarget::INSTALL_FILES:
case cmTarget::INSTALL_PROGRAMS:
break;
}
return "";
}
const char* cmTarget::GetSuffixVariable()
{
return this->GetSuffixVariableInternal(this->GetType());
}
const char* cmTarget::GetSuffixVariableInternal(TargetType type)
{
switch(type)
{
case cmTarget::STATIC_LIBRARY:
return "CMAKE_STATIC_LIBRARY_SUFFIX";
case cmTarget::SHARED_LIBRARY:
return "CMAKE_SHARED_LIBRARY_SUFFIX";
case cmTarget::MODULE_LIBRARY:
return "CMAKE_SHARED_MODULE_SUFFIX";
case cmTarget::EXECUTABLE:
return "CMAKE_EXECUTABLE_SUFFIX";
case cmTarget::UTILITY:
case cmTarget::INSTALL_FILES:
case cmTarget::INSTALL_PROGRAMS:
break;
}
return "";
}
const char* cmTarget::GetPrefixVariable()
{
return this->GetPrefixVariableInternal(this->GetType());
}
const char* cmTarget::GetPrefixVariableInternal(TargetType type)
{
switch(type)
{
case cmTarget::STATIC_LIBRARY:
return "CMAKE_STATIC_LIBRARY_PREFIX";
case cmTarget::SHARED_LIBRARY:
return "CMAKE_SHARED_LIBRARY_PREFIX";
case cmTarget::MODULE_LIBRARY:
return "CMAKE_SHARED_MODULE_PREFIX";
case cmTarget::EXECUTABLE:
case cmTarget::UTILITY:
case cmTarget::INSTALL_FILES:
case cmTarget::INSTALL_PROGRAMS:
break;
}
return "";
}
//----------------------------------------------------------------------------
std::string cmTarget::GetFullName(const char* config)
{
return this->GetFullNameInternal(this->GetType(), config);
}
//----------------------------------------------------------------------------
void cmTarget::GetFullName(std::string& prefix, std::string& base,
std::string& suffix, const char* config)
{
this->GetFullNameInternal(this->GetType(), config, prefix, base, suffix);
}
//----------------------------------------------------------------------------
std::string cmTarget::GetFullPath(const char* config)
{
// Start with the output directory for the target.
std::string fpath = this->GetDirectory();
// Add the configuration's subdirectory.
m_Makefile->GetLocalGenerator()->GetGlobalGenerator()->
AppendDirectoryForConfig(config, fpath);
// Add the full name of the target.
fpath += "/";
fpath += this->GetFullName(config);
return fpath;
}
//----------------------------------------------------------------------------
std::string cmTarget::GetFullNameInternal(TargetType type, const char* config)
{
std::string prefix;
std::string base;
std::string suffix;
this->GetFullNameInternal(type, config, prefix, base, suffix);
return prefix+base+suffix;
}
//----------------------------------------------------------------------------
void cmTarget::GetFullNameInternal(TargetType type,
const char* config,
std::string& outPrefix,
std::string& outBase,
std::string& outSuffix)
{
// Use just the target name for non-main target types.
if(type != cmTarget::STATIC_LIBRARY &&
type != cmTarget::SHARED_LIBRARY &&
type != cmTarget::MODULE_LIBRARY &&
type != cmTarget::EXECUTABLE)
{
outPrefix = "";
outBase = this->GetName();
outSuffix = "";
return;
}
// Compute the full name for main target types.
const char* targetPrefix = this->GetProperty("PREFIX");
const char* targetSuffix = this->GetProperty("SUFFIX");
const char* configPostfix = 0;
if(config && *config && type != cmTarget::EXECUTABLE)
{
std::string configVar = "CMAKE_";
configVar += config;
configVar += "_POSTFIX";
configVar = cmSystemTools::UpperCase(configVar);
configPostfix = m_Makefile->GetDefinition(configVar.c_str());
}
const char* prefixVar = this->GetPrefixVariableInternal(type);
const char* suffixVar = this->GetSuffixVariableInternal(type);
const char* ll =
this->GetLinkerLanguage(
m_Makefile->GetLocalGenerator()->GetGlobalGenerator());
// first try language specific suffix
if(ll)
{
if(!targetSuffix && suffixVar && *suffixVar)
{
std::string langSuff = suffixVar + std::string("_") + ll;
targetSuffix = m_Makefile->GetDefinition(langSuff.c_str());
}
if(!targetPrefix && prefixVar && *prefixVar)
{
std::string langPrefix = prefixVar + std::string("_") + ll;
targetPrefix = m_Makefile->GetDefinition(langPrefix.c_str());
}
}
// if there is no prefix on the target use the cmake definition
if(!targetPrefix && prefixVar)
{
targetPrefix = m_Makefile->GetSafeDefinition(prefixVar);
}
// if there is no suffix on the target use the cmake definition
if(!targetSuffix && suffixVar)
{
targetSuffix = m_Makefile->GetSafeDefinition(suffixVar);
}
// Begin the final name with the prefix.
outPrefix = targetPrefix?targetPrefix:"";
// Append the target name or property-specified name. Support this
// only for executable targets.
const char* outname = this->GetProperty("OUTPUT_NAME");
if(outname && type == cmTarget::EXECUTABLE)
{
outBase = outname;
}
else
{
outBase = this->GetName();
}
// Append the per-configuration postfix.
outBase += configPostfix?configPostfix:"";
// Append the suffix.
outSuffix = targetSuffix?targetSuffix:"";
}
void cmTarget::GetLibraryNames(std::string& name,
std::string& soName,
std::string& realName,
const char* config)
{
// Get the names based on the real type of the library.
this->GetLibraryNamesInternal(name, soName, realName, this->GetType(),
config);
}
void cmTarget::GetLibraryCleanNames(std::string& staticName,
std::string& sharedName,
std::string& sharedSOName,
std::string& sharedRealName,
const char* config)
{
// Get the name as if this were a static library.
std::string soName;
std::string realName;
this->GetLibraryNamesInternal(staticName, soName, realName,
cmTarget::STATIC_LIBRARY, config);
// Get the names as if this were a shared library.
if(this->GetType() == cmTarget::STATIC_LIBRARY)
{
// Since the real type is static then the user either specified
// STATIC or did not specify a type. In the former case the
// shared library will never be present. In the latter case the
// type will never be MODULE. Either way the only names that
// might have to be cleaned are the shared library names.
this->GetLibraryNamesInternal(sharedName, sharedSOName,
sharedRealName, cmTarget::SHARED_LIBRARY,
config);
}
else
{
// Use the name of the real type of the library (shared or module).
this->GetLibraryNamesInternal(sharedName, sharedSOName,
sharedRealName, this->GetType(),
config);
}
}
void cmTarget::GetLibraryNamesInternal(std::string& name,
std::string& soName,
std::string& realName,
TargetType type,
const char* config)
{
// Construct the name of the soname flag variable for this language.
const char* ll =
this->GetLinkerLanguage(
m_Makefile->GetLocalGenerator()->GetGlobalGenerator());
std::string sonameFlag = "CMAKE_SHARED_LIBRARY_SONAME";
if(ll)
{
sonameFlag += "_";
sonameFlag += ll;
}
sonameFlag += "_FLAG";
// Check for library version properties.
const char* version = this->GetProperty("VERSION");
const char* soversion = this->GetProperty("SOVERSION");
if((type != cmTarget::SHARED_LIBRARY && type != cmTarget::MODULE_LIBRARY) ||
!m_Makefile->GetDefinition(sonameFlag.c_str()))
{
// Versioning is supported only for shared libraries and modules,
// and then only when the platform supports an soname flag.
version = 0;
soversion = 0;
}
if(version && !soversion)
{
// The soversion must be set if the library version is set. Use
// the library version as the soversion.
soversion = version;
}
// The library name.
name = this->GetFullNameInternal(type, config);
// The library's soname.
soName = name;
if(soversion)
{
soName += ".";
soName += soversion;
}
// The library's real name on disk.
realName = name;
if(version)
{
realName += ".";
realName += version;
}
else if(soversion)
{
realName += ".";
realName += soversion;
}
}
void cmTarget::GetExecutableNames(std::string& name,
std::string& realName,
const char* config)
{
// Get the names based on the real type of the executable.
this->GetExecutableNamesInternal(name, realName, this->GetType(), config);
}
void cmTarget::GetExecutableCleanNames(std::string& name,
std::string& realName,
const char* config)
{
// Get the name and versioned name of this executable.
this->GetExecutableNamesInternal(name, realName, cmTarget::EXECUTABLE,
config);
}
void cmTarget::GetExecutableNamesInternal(std::string& name,
std::string& realName,
TargetType type,
const char* config)
{
// This versioning is supported only for executables and then only
// when the platform supports symbolic links.
#if defined(_WIN32) && !defined(__CYGWIN__)
const char* version = 0;
#else
// Check for executable version properties.
const char* version = this->GetProperty("VERSION");
if(type != cmTarget::EXECUTABLE)
{
version = 0;
}
#endif
// The executable name.
name = this->GetFullNameInternal(type, config);
// The executable's real name on disk.
realName = name;
if(version)
{
realName += "-";
realName += version;
}
}