CMake/Source/cmTarget.cxx

768 lines
26 KiB
C++

/*=========================================================================
Program: CMake - Cross-Platform Makefile Generator
Module: $RCSfile$
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) 2002 Kitware, Inc., Insight Consortium. All rights reserved.
See Copyright.txt or http://www.cmake.org/HTML/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "cmTarget.h"
#include "cmMakefile.h"
#include "cmSourceFile.h"
#include <map>
#include <set>
#include <queue>
#include <stdlib.h> // required for atof
void cmTarget::SetType(TargetType type)
{
// only add dependency information for library targets
m_TargetType = type;
if(m_TargetType >= STATIC_LIBRARY && m_TargetType <= MODULE_LIBRARY) {
m_RecordDependencies = true;
} else {
m_RecordDependencies = false;
}
}
void cmTarget::TraceVSDependencies(std::string projFile,
cmMakefile *makefile)
{
// get the classes from the source lists then add them to the groups
std::vector<cmSourceFile*> & classes = this->GetSourceFiles();
// use a deck to keep track of processed source files
std::queue<std::string> srcFilesToProcess;
std::set<std::string> srcFilesQueued;
std::string name;
std::vector<cmSourceFile*> newClasses;
for(std::vector<cmSourceFile*>::const_iterator i = classes.begin();
i != classes.end(); ++i)
{
name = (*i)->GetSourceName();
if ((*i)->GetSourceExtension() != "rule")
{
name += ".";
name += (*i)->GetSourceExtension();
}
srcFilesToProcess.push(name);
srcFilesQueued.insert(name);
// does this sourcefile have object depends on it?
// If so then add them as well
const char* additionalDeps = (*i)->GetProperty("OBJECT_DEPENDS");
if (additionalDeps)
{
std::vector<std::string> depends;
cmSystemTools::ExpandListArgument(additionalDeps, depends);
for(std::vector<std::string>::iterator id = depends.begin();
id != depends.end(); ++id)
{
// if there is a cutom rule to generate that dependency
// then add it to the list
cmSourceFile* outsf =
makefile->GetSourceFileWithOutput(id->c_str());
// if a source file was found then add it
if (outsf &&
(std::find(classes.begin(),classes.end(),outsf) == classes.end()) &&
(std::find(newClasses.begin(),newClasses.end(),outsf) == newClasses.end()))
{
// then add the source to this target and add it to the queue
newClasses.push_back(outsf);
name = outsf->GetSourceName();
if (outsf->GetSourceExtension() != "rule")
{
name += ".";
name += outsf->GetSourceExtension();
}
std::string temp =
cmSystemTools::GetFilenamePath(outsf->GetFullPath());
temp += "/";
temp += name;
// if it hasn't been processed
if (srcFilesQueued.find(temp) == srcFilesQueued.end())
{
srcFilesToProcess.push(temp);
srcFilesQueued.insert(temp);
}
}
}
}
}
for(std::vector<cmSourceFile*>::const_iterator i = newClasses.begin();
i != newClasses.end(); ++i)
{
classes.push_back(*i);
}
// add in the project file itself
srcFilesToProcess.push(projFile);
srcFilesQueued.insert(projFile);
// add in the library depends for cusotm targets
if (this->GetType() == cmTarget::UTILITY)
{
for (std::vector<cmCustomCommand>::iterator ic =
this->GetPostBuildCommands().begin();
ic != this->GetPostBuildCommands().end(); ++ic)
{
cmCustomCommand &c = *ic;
for (std::vector<std::string>::iterator i = c.GetDepends().begin();
i != c.GetDepends().end(); ++i)
{
srcFilesToProcess.push(*i);
srcFilesQueued.insert(*i);
}
}
}
while (!srcFilesToProcess.empty())
{
// is this source the output of a custom command
cmSourceFile* outsf =
makefile->GetSourceFileWithOutput(srcFilesToProcess.front().c_str());
if (outsf)
{
// is it not already in the target?
if (std::find(classes.begin(),classes.end(),outsf) == classes.end())
{
// then add the source to this target and add it to the queue
classes.push_back(outsf);
name = outsf->GetSourceName();
if (outsf->GetSourceExtension() != "rule")
{
name += ".";
name += outsf->GetSourceExtension();
}
std::string temp =
cmSystemTools::GetFilenamePath(outsf->GetFullPath());
temp += "/";
temp += name;
// if it hasn't been processed
if (srcFilesQueued.find(temp) == srcFilesQueued.end())
{
srcFilesToProcess.push(temp);
srcFilesQueued.insert(temp);
}
}
// add its dependencies to the list to check
unsigned int i;
for (i = 0; i < outsf->GetCustomCommand()->GetDepends().size(); ++i)
{
std::string dep = cmSystemTools::GetFilenameName(
outsf->GetCustomCommand()->GetDepends()[i]);
if (cmSystemTools::GetFilenameLastExtension(dep) == ".exe")
{
dep = cmSystemTools::GetFilenameWithoutLastExtension(dep);
}
// watch for target dependencies,
std::string libPath = dep + "_CMAKE_PATH";
const char* cacheValue = makefile->GetDefinition(libPath.c_str());
if (cacheValue && *cacheValue)
{
// add the depend as a utility on the target
this->AddUtility(dep.c_str());
}
else
{
if (srcFilesQueued.find(outsf->GetCustomCommand()->GetDepends()[i])
== srcFilesQueued.end())
{
srcFilesToProcess.push(outsf->GetCustomCommand()->GetDepends()[i]);
srcFilesQueued.insert(outsf->GetCustomCommand()->GetDepends()[i]);
}
}
}
}
// finished with this SF move to the next
srcFilesToProcess.pop();
}
}
void cmTarget::GenerateSourceFilesFromSourceLists( cmMakefile &mf)
{
// this is only done for non install targets
if ((this->m_TargetType == cmTarget::INSTALL_FILES)
|| (this->m_TargetType == cmTarget::INSTALL_PROGRAMS))
{
return;
}
// for each src lists add the classes
for (std::vector<std::string>::const_iterator s = m_SourceLists.begin();
s != m_SourceLists.end(); ++s)
{
int done = 0;
// replace any variables
std::string temps = *s;
mf.ExpandVariablesInString(temps);
// Next if one wasn't found then assume it is a single class
// check to see if it is an existing source file
if (!done && mf.GetSource(temps.c_str()))
{
m_SourceFiles.push_back(mf.GetSource(temps.c_str()));
done = 1;
}
// if it wasn't a source file listed with the makefile
// see if it is a variable. This is for old CMake 1.2 compatability
// where a source list would be passed into here, by making it
// a vector we need to possibly lookup the variable to maintain
// CMake 1.2 compatability.
const char* versionValue
= mf.GetDefinition("CMAKE_MINIMUM_REQUIRED_VERSION");
if (!done)
{
if (!versionValue || atof(versionValue) <= 1.2)
{
const char* varValue =
mf.GetDefinition(temps.c_str());
// if the definition exists
if (varValue)
{
std::vector<std::string> args;
cmSystemTools::ExpandListArgument(varValue, args);
unsigned int i;
for (i = 0; i < args.size(); ++i)
{
if (mf.GetSource(args[i].c_str()))
{
m_SourceFiles.push_back(mf.GetSource(args[i].c_str()));
}
else
{
cmSourceFile file;
file.SetProperty("ABSTRACT","0");
file.SetName(args[i].c_str(), mf.GetCurrentDirectory(),
mf.GetSourceExtensions(),
mf.GetHeaderExtensions());
m_SourceFiles.push_back(mf.AddSource(file));
}
}
done = 1;
}
}
}
// if we still are not done, try to create the SourceFile structure
if (!done)
{
cmSourceFile file;
file.SetProperty("ABSTRACT","0");
file.SetName(temps.c_str(), mf.GetCurrentDirectory(),
mf.GetSourceExtensions(),
mf.GetHeaderExtensions());
m_SourceFiles.push_back(mf.AddSource(file));
}
}
// expand any link library variables whle we are at it
LinkLibraries::iterator p = m_LinkLibraries.begin();
for (;p != m_LinkLibraries.end(); ++p)
{
mf.ExpandVariablesInString(p->first);
}
}
void cmTarget::MergeLinkLibraries( cmMakefile& mf,
const char *selfname,
const LinkLibraries& libs )
{
// Only add on libraries we haven't added on before.
// Assumption: the global link libraries could only grow, never shrink
LinkLibraries::const_iterator i = libs.begin();
i += m_PrevLinkedLibraries.size();
for( ; i != libs.end(); ++i )
{
// We call this so that the dependencies get written to the cache
this->AddLinkLibrary( mf, selfname, i->first.c_str(), i->second );
}
m_PrevLinkedLibraries = libs;
}
void cmTarget::AddLinkDirectory(const char* d)
{
// Make sure we don't add unnecessary search directories.
if( std::find( m_LinkDirectories.begin(), m_LinkDirectories.end(), d )
== m_LinkDirectories.end() )
m_LinkDirectories.push_back( d );
}
void cmTarget::ClearDependencyInformation( cmMakefile& mf, const char* target )
{
// Clear the dependencies. The cache variable must exist iff we are
// recording dependency information for this target.
std::string depname = target;
depname += "_LIB_DEPENDS";
if (m_RecordDependencies)
{
mf.AddCacheDefinition(depname.c_str(), "",
"Dependencies for target", cmCacheManager::STATIC);
}
else
{
if (mf.GetDefinition( depname.c_str() ))
{
std::string message = "Target ";
message += target;
message += " has dependency information when it shouldn't.\n";
message += "Your cache is probably stale. Please remove the entry\n ";
message += depname;
message += "\nfrom the cache.";
cmSystemTools::Error( message.c_str() );
}
}
}
void cmTarget::AddLinkLibrary(const std::string& lib,
LinkLibraryType llt)
{
m_LinkLibraries.push_back( std::pair<std::string, cmTarget::LinkLibraryType>(lib,llt) );
}
void cmTarget::AddLinkLibrary(cmMakefile& mf,
const char *target, const char* lib,
LinkLibraryType llt)
{
// Never add a self dependency, even if the user asks for it.
if(strcmp( target, lib ) == 0)
{
return;
}
m_LinkLibraries.push_back( std::pair<std::string, cmTarget::LinkLibraryType>(lib,llt) );
if(llt != cmTarget::GENERAL)
{
// Store the library's link type in the cache. If it is a
// conflicting type then assume it is always used. This is the
// case when the user sets the cache entries for debug and
// optimized versions of the library to the same value.
std::string linkTypeName = lib;
linkTypeName += "_LINK_TYPE";
switch(llt)
{
case cmTarget::DEBUG:
{
const char* def = mf.GetDefinition(linkTypeName.c_str());
if(!def || strcmp(def, "debug") == 0)
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"debug", "Library is used for debug links only",
cmCacheManager::STATIC);
}
else
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"general", "Library is used for both debug and optimized links",
cmCacheManager::STATIC);
}
}
break;
case cmTarget::OPTIMIZED:
{
const char* def = mf.GetDefinition(linkTypeName.c_str());
if(!def || strcmp(def, "optimized") == 0)
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"optimized", "Library is used for debug links only",
cmCacheManager::STATIC);
}
else
{
mf.AddCacheDefinition(linkTypeName.c_str(),
"general", "Library is used for both debug and optimized links",
cmCacheManager::STATIC);
}
}
break;
case cmTarget::GENERAL:
break;
}
}
// Add the explicit dependency information for this target. This is
// simply a set of libraries separated by ";". There should always
// be a trailing ";". These library names are not canonical, in that
// they may be "-framework x", "-ly", "/path/libz.a", etc.
// We shouldn't remove duplicates here because external libraries
// may be purposefully duplicated to handle recursive dependencies,
// and we removing one instance will break the link line. Duplicates
// will be appropriately eliminated at emit time.
if(m_RecordDependencies)
{
std::string targetEntry = target;
targetEntry += "_LIB_DEPENDS";
std::string dependencies;
const char* old_val = mf.GetDefinition( targetEntry.c_str() );
if( old_val )
{
dependencies += old_val;
}
dependencies += lib;
dependencies += ";";
mf.AddCacheDefinition( targetEntry.c_str(), dependencies.c_str(),
"Dependencies for the target",
cmCacheManager::STATIC );
}
}
bool cmTarget::HasCxx() const
{
if(this->GetProperty("HAS_CXX"))
{
return true;
}
for(std::vector<cmSourceFile*>::const_iterator i = m_SourceFiles.begin();
i != m_SourceFiles.end(); ++i)
{
if(cmSystemTools::GetFileFormat((*i)->GetSourceExtension().c_str())
== cmSystemTools::CXX_FILE_FORMAT)
{
return true;
}
}
return false;
}
void
cmTarget::AnalyzeLibDependencies( const cmMakefile& mf )
{
// There are two key parts of the dependency analysis: (1)
// determining the libraries in the link line, and (2) constructing
// the dependency graph for those libraries.
//
// The latter is done using the cache entries that record the
// dependencies of each library.
//
// The former is a more thorny issue, since it is not clear how to
// determine if two libraries listed on the link line refer to the a
// single library or not. For example, consider the link "libraries"
// /usr/lib/libtiff.so -ltiff
// Is this one library or two? The solution implemented here is the
// simplest (and probably the only practical) one: two libraries are
// the same if their "link strings" are identical. Thus, the two
// libraries above are considered distinct. This also means that for
// dependency analysis to be effective, the CMake user must specify
// libraries build by his project without using any linker flags or
// file extensions. That is,
// LINK_LIBRARIES( One Two )
// instead of
// LINK_LIBRARIES( -lOne ${binarypath}/libTwo.a )
// The former is probably what most users would do, but it never
// hurts to document the assumptions. :-) Therefore, in the analysis
// code, the "canonical name" of a library is simply its name as
// given to a LINK_LIBRARIES command.
//
// Also, we will leave the original link line intact; we will just add any
// dependencies that were missing.
//
// There is a problem with recursive external libraries
// (i.e. libraries with no dependency information that are
// recursively dependent). We must make sure that the we emit one of
// the libraries twice to satisfy the recursion, but we shouldn't
// emit it more times than necessary. In particular, we must make
// sure that handling this improbable case doesn't cost us when
// dealing with the common case of non-recursive libraries. The
// solution is to assume that the recursion is satisfied at one node
// of the dependency tree. To illustrate, assume libA and libB are
// extrenal and mutually dependent. Suppose libX depends on
// libA, and libY on libA and libX. Then
// TARGET_LINK_LIBRARIES( Y X A B A )
// TARGET_LINK_LIBRARIES( X A B A )
// TARGET_LINK_LIBRARIES( Exec Y )
// would result in "-lY -lX -lA -lB -lA". This is the correct way to
// specify the dependencies, since the mutual dependency of A and B
// is resolved *every time libA is specified*.
//
// Something like
// TARGET_LINK_LIBRARIES( Y X A B A )
// TARGET_LINK_LIBRARIES( X A B )
// TARGET_LINK_LIBRARIES( Exec Y )
// would result in "-lY -lX -lA -lB", and the mutual dependency
// information is lost. This is because in some case (Y), the mutual
// dependency of A and B is listed, while in another other case (X),
// it is not. Depending on which line actually emits A, the mutual
// dependency may or may not be on the final link line. We can't
// handle this pathalogical case cleanly without emitting extra
// libraries for the normal cases. Besides, the dependency
// information for X is wrong anyway: if we build an executable
// depending on X alone, we would not have the mutual dependency on
// A and B resolved.
//
// IMPROVEMENTS:
// -- The current algorithm will not always pick the "optimal" link line
// when recursive dependencies are present. It will instead break the
// cycles at an aribtrary point. The majority of projects won't have
// cyclic dependencies, so this is probably not a big deal. Note that
// the link line is always correct, just not necessary optimal.
typedef std::vector< std::string > LinkLine;
// The dependency map.
DependencyMap dep_map;
// If LIBRARY_OUTPUT_PATH is not set, then we must add search paths
// for all the new libraries added by the dependency analysis.
const char* libOutPath = mf.GetDefinition("LIBRARY_OUTPUT_PATH");
bool addLibDirs = (libOutPath==0 || strcmp(libOutPath,"")==0);
// 1. Build the dependency graph
//
for(LinkLibraries::reverse_iterator lib = m_LinkLibraries.rbegin();
lib != m_LinkLibraries.rend(); ++lib)
{
this->GatherDependencies( mf, lib->first, dep_map );
}
// 2. Remove any dependencies that are already satisfied in the original
// link line.
//
for(LinkLibraries::iterator lib = m_LinkLibraries.begin();
lib != m_LinkLibraries.end(); ++lib)
{
for( LinkLibraries::iterator lib2 = lib;
lib2 != m_LinkLibraries.end(); ++lib2)
{
DeleteDependency( dep_map, lib->first, lib2->first );
}
}
// 3. Create the new link line by simply emitting any dependencies that are
// missing. Start from the back and keep adding.
//
std::set<cmStdString> done, visited;
std::vector<std::string> newLinkLibraries;
for(LinkLibraries::reverse_iterator lib = m_LinkLibraries.rbegin();
lib != m_LinkLibraries.rend(); ++lib)
{
// skip zero size library entries, this may happen
// if a variable expands to nothing.
if (lib->first.size() != 0)
{
Emit( lib->first, dep_map, done, visited, newLinkLibraries );
}
}
// 4. Add the new libraries to the link line.
//
for( std::vector<std::string>::reverse_iterator k = newLinkLibraries.rbegin();
k != newLinkLibraries.rend(); ++k )
{
if( addLibDirs )
{
// who the hell knows what this is, I think that K contains the
// name of a library but ... Ken
// k contains the same stuff that are on the LINK_LIBRARIES
// commands. Normally, they would just be library names. -- Amitha.
std::string libPathStr = *k + "_CMAKE_PATH";
const char* libpath = mf.GetDefinition( libPathStr.c_str() );
if( libpath )
{
// Don't add a link directory that is already present.
if(std::find(m_LinkDirectories.begin(),
m_LinkDirectories.end(), libpath) == m_LinkDirectories.end())
{
m_LinkDirectories.push_back(libpath);
}
}
}
std::string linkType = *k;
linkType += "_LINK_TYPE";
cmTarget::LinkLibraryType llt = cmTarget::GENERAL;
const char* linkTypeString = mf.GetDefinition( linkType.c_str() );
if(linkTypeString)
{
if(strcmp(linkTypeString, "debug") == 0)
{
llt = cmTarget::DEBUG;
}
if(strcmp(linkTypeString, "optimized") == 0)
{
llt = cmTarget::OPTIMIZED;
}
}
m_LinkLibraries.push_back( std::make_pair(*k,llt) );
}
}
void cmTarget::InsertDependency( DependencyMap& depMap,
const cmStdString& lib,
const cmStdString& dep ) const
{
depMap[lib].push_back(dep);
}
void cmTarget::DeleteDependency( DependencyMap& depMap,
const cmStdString& lib,
const cmStdString& dep ) const
{
// Make sure there is an entry in the map for lib. If so, delete all
// dependencies to dep. There may be repeated entries because of
// external libraries that are specified multiple times.
DependencyMap::iterator map_itr = depMap.find( lib );
if( map_itr != depMap.end() )
{
DependencyList& depList = map_itr->second;
DependencyList::iterator itr;
while( (itr = std::find(depList.begin(), depList.end(), dep)) != depList.end() )
{
depList.erase( itr );
}
}
}
void cmTarget::Emit( const std::string& lib,
const DependencyMap& dep_map,
std::set<cmStdString>& emitted,
std::set<cmStdString>& visited,
std::vector<std::string>& link_line ) const
{
// It's already been emitted
if( emitted.find(lib) != emitted.end() )
return;
// Emit the dependencies only if this library node hasn't been
// visited before. If it has, then we have a cycle. The recursion
// that got us here should take care of everything.
if( visited.insert(lib).second )
{
if( dep_map.find(lib) != dep_map.end() ) // does it have dependencies?
{
const DependencyList& dep_on = dep_map.find( lib )->second;
DependencyList::const_reverse_iterator i;
// To cater for recursive external libraries, we must emit
// duplicates on this link line *unless* they were emitted by
// some other node, in which case we assume that the recursion
// was resolved then. We making the simplifying assumption that
// any duplicates on a single link line are on purpose, and must
// be preserved.
// This variable will keep track of the libraries that were
// emitted directory from the current node, and not from a
// recursive call. This way, if we come across a library that
// has already been emitted, we repeat it iff it has been
// emitted here.
std::set<cmStdString> emitted_here;
for( i = dep_on.rbegin(); i != dep_on.rend(); ++i )
{
if( emitted_here.find(*i) != emitted_here.end() )
{
// a repeat. Must emit.
emitted.insert(*i);
link_line.push_back( *i );
}
else
{
// Emit only if no-one else has
if( emitted.find(*i) == emitted.end() )
{
// emit dependencies
Emit( *i, dep_map, emitted, visited, link_line );
// emit self
emitted.insert(*i);
emitted_here.insert(*i);
link_line.push_back( *i );
}
}
}
}
}
}
void cmTarget::GatherDependencies( const cmMakefile& mf,
const std::string& lib,
DependencyMap& dep_map )
{
// If the library is already in the dependency map, then it has
// already been fully processed.
if( dep_map.find(lib) != dep_map.end() )
return;
const char* deps = mf.GetDefinition( (lib+"_LIB_DEPENDS").c_str() );
if( deps && strcmp(deps,"") != 0 )
{
// Make sure this library is in the map, even if it has an empty
// set of dependencies. This distinguishes the case of explicitly
// no dependencies with that of unspecified dependencies.
dep_map[lib];
// Parse the dependency information, which is simply a set of
// libraries separated by ";". There is always a trailing ";".
std::string depline = deps;
std::string::size_type start = 0;
std::string::size_type end;
end = depline.find( ";", start );
while( end != std::string::npos )
{
std::string l = depline.substr( start, end-start );
if( l.size() != 0 )
{
InsertDependency( dep_map, lib, l );
GatherDependencies( mf, l, dep_map );
}
start = end+1; // skip the ;
end = depline.find( ";", start );
}
DeleteDependency( dep_map, lib, lib); // cannot depend on itself
}
}
void cmTarget::SetProperty(const char* prop, const char* value)
{
if (!prop)
{
return;
}
if (!value)
{
value = "NOTFOUND";
}
m_Properties[prop] = value;
}
const char *cmTarget::GetProperty(const char* prop) const
{
std::map<cmStdString,cmStdString>::const_iterator i =
m_Properties.find(prop);
if (i != m_Properties.end())
{
return i->second.c_str();
}
return 0;
}
bool cmTarget::GetPropertyAsBool(const char* prop) const
{
std::map<cmStdString,cmStdString>::const_iterator i =
m_Properties.find(prop);
if (i != m_Properties.end())
{
return cmSystemTools::IsOn(i->second.c_str());
}
return false;
}