CMake/SystemInformation.cxx

5375 lines
145 KiB
C++

/*============================================================================
KWSys - Kitware System Library
Copyright 2000-2009 Kitware, Inc., Insight Software Consortium
Distributed under the OSI-approved BSD License (the "License");
see accompanying file Copyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the License for more information.
============================================================================*/
#if defined(_WIN32)
# define NOMINMAX // use our min,max
# if !defined(_WIN32_WINNT) && !(defined(_MSC_VER) && _MSC_VER < 1300)
# define _WIN32_WINNT 0x0501
# endif
# include <winsock.h> // WSADATA, include before sys/types.h
#endif
#if (defined(__GNUC__) || defined(__PGI)) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif
// TODO:
// We need an alternative implementation for many functions in this file
// when USE_ASM_INSTRUCTIONS gets defined as 0.
//
// Consider using these on Win32/Win64 for some of them:
//
// IsProcessorFeaturePresent
// http://msdn.microsoft.com/en-us/library/ms724482(VS.85).aspx
//
// GetProcessMemoryInfo
// http://msdn.microsoft.com/en-us/library/ms683219(VS.85).aspx
#include "kwsysPrivate.h"
#include KWSYS_HEADER(stl/string)
#include KWSYS_HEADER(stl/vector)
#include KWSYS_HEADER(ios/iosfwd)
#include KWSYS_HEADER(SystemInformation.hxx)
#include KWSYS_HEADER(Process.h)
#include KWSYS_HEADER(ios/iostream)
#include KWSYS_HEADER(ios/sstream)
#include KWSYS_HEADER(ios/fstream)
// Work-around CMake dependency scanning limitation. This must
// duplicate the above list of headers.
#if 0
# include "SystemInformation.hxx.in"
# include "Process.h.in"
# include "Configure.hxx.in"
# include "kwsys_stl.hxx.in"
# include "kwsys_stl_vector.in"
# include "kwsys_stl_iosfwd.in"
# include "kwsys_ios_sstream.h.in"
# include "kwsys_ios_iostream.h.in"
# include "kwsys_ios_fstream.h.in"
#endif
#if defined(_WIN32)
# include <windows.h>
# if defined(_MSC_VER) && _MSC_VER >= 1800
# define KWSYS_WINDOWS_DEPRECATED_GetVersionEx
# endif
# include <errno.h>
# if defined(KWSYS_SYS_HAS_PSAPI)
# include <psapi.h>
# endif
# if !defined(siginfo_t)
typedef int siginfo_t;
# endif
#else
# include <sys/types.h>
# include <sys/time.h>
# include <sys/utsname.h> // int uname(struct utsname *buf);
# include <sys/resource.h> // getrlimit
# include <unistd.h>
# include <signal.h>
# include <fcntl.h>
# include <errno.h> // extern int errno;
#endif
#ifdef __FreeBSD__
# include <sys/sysctl.h>
# include <fenv.h>
# include <sys/socket.h>
# include <netdb.h>
# include <netinet/in.h>
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
# include <ifaddrs.h>
# define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
# endif
#endif
#if defined(__OpenBSD__) || defined(__NetBSD__)
# include <sys/param.h>
# include <sys/sysctl.h>
#endif
#if defined(KWSYS_SYS_HAS_MACHINE_CPU_H)
# include <machine/cpu.h>
#endif
#if defined(__DragonFly__)
# include <sys/sysctl.h>
#endif
#ifdef __APPLE__
# include <sys/sysctl.h>
# include <mach/vm_statistics.h>
# include <mach/host_info.h>
# include <mach/mach.h>
# include <mach/mach_types.h>
# include <fenv.h>
# include <sys/socket.h>
# include <netdb.h>
# include <netinet/in.h>
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
# include <ifaddrs.h>
# define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
# endif
# if !(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__-0 >= 1050)
# undef KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE
# endif
#endif
#ifdef __linux
# include <fenv.h>
# include <sys/socket.h>
# include <netdb.h>
# include <netinet/in.h>
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
# include <ifaddrs.h>
# if !defined(__LSB_VERSION__) /* LSB has no getifaddrs */
# define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
# endif
# endif
# if defined(KWSYS_CXX_HAS_RLIMIT64)
typedef struct rlimit64 ResourceLimitType;
# define GetResourceLimit getrlimit64
# else
typedef struct rlimit ResourceLimitType;
# define GetResourceLimit getrlimit
# endif
#elif defined( __hpux )
# include <sys/param.h>
# include <sys/pstat.h>
# if defined(KWSYS_SYS_HAS_MPCTL_H)
# include <sys/mpctl.h>
# endif
#endif
#ifdef __HAIKU__
# include <OS.h>
#endif
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
# include <execinfo.h>
# if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
# include <cxxabi.h>
# endif
# if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
# include <dlfcn.h>
# endif
#else
# undef KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE
# undef KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP
#endif
#include <memory.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h> // int isdigit(int c);
#if defined(KWSYS_USE_LONG_LONG)
# if defined(KWSYS_IOS_HAS_OSTREAM_LONG_LONG)
# define iostreamLongLong(x) (x)
# else
# define iostreamLongLong(x) ((long)x)
# endif
#elif defined(KWSYS_USE___INT64)
# if defined(KWSYS_IOS_HAS_OSTREAM___INT64)
# define iostreamLongLong(x) (x)
# else
# define iostreamLongLong(x) ((long)x)
# endif
#else
# error "No Long Long"
#endif
#if defined(KWSYS_CXX_HAS_ATOLL)
# define atoLongLong atoll
#else
# if defined(KWSYS_CXX_HAS__ATOI64)
# define atoLongLong _atoi64
# elif defined(KWSYS_CXX_HAS_ATOL)
# define atoLongLong atol
# else
# define atoLongLong atoi
# endif
#endif
#if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64)
#define USE_ASM_INSTRUCTIONS 1
#else
#define USE_ASM_INSTRUCTIONS 0
#endif
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
#include <intrin.h>
#define USE_CPUID_INTRINSICS 1
#else
#define USE_CPUID_INTRINSICS 0
#endif
#if USE_ASM_INSTRUCTIONS || USE_CPUID_INTRINSICS || defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID)
# define USE_CPUID 1
#else
# define USE_CPUID 0
#endif
#if USE_CPUID
#define CPUID_AWARE_COMPILER
/**
* call CPUID instruction
*
* Will return false if the instruction failed.
*/
static bool call_cpuid(int select, int result[4])
{
#if USE_CPUID_INTRINSICS
__cpuid(result, select);
return true;
#else
int tmp[4];
#if defined(_MSC_VER)
// Use SEH to determine CPUID presence
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser does not know about <<CPUID>>, and so does not expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
mov eax, select
#ifdef CPUID_AWARE_COMPILER
cpuid
#else
_asm _emit 0x0f
_asm _emit 0xa2
#endif
mov tmp[0 * TYPE int], eax
mov tmp[1 * TYPE int], ebx
mov tmp[2 * TYPE int], ecx
mov tmp[3 * TYPE int], edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
memcpy(result, tmp, sizeof(tmp));
#elif defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID)
unsigned int a, b, c, d;
__asm {
mov EAX, select;
cpuid
mov a, EAX;
mov b, EBX;
mov c, ECX;
mov d, EDX;
}
result[0] = a;
result[1] = b;
result[2] = c;
result[3] = d;
#endif
// The cpuid instruction succeeded.
return true;
#endif
}
#endif
namespace KWSYS_NAMESPACE
{
template<typename T>
T min(T a, T b){ return a<b ? a : b; }
extern "C" { typedef void (*SigAction)(int,siginfo_t*,void*); }
// Define SystemInformationImplementation class
typedef void (*DELAY_FUNC)(unsigned int uiMS);
class SystemInformationImplementation
{
public:
typedef SystemInformation::LongLong LongLong;
SystemInformationImplementation ();
~SystemInformationImplementation ();
const char * GetVendorString();
const char * GetVendorID();
kwsys_stl::string GetTypeID();
kwsys_stl::string GetFamilyID();
kwsys_stl::string GetModelID();
kwsys_stl::string GetModelName();
kwsys_stl::string GetSteppingCode();
const char * GetExtendedProcessorName();
const char * GetProcessorSerialNumber();
int GetProcessorCacheSize();
unsigned int GetLogicalProcessorsPerPhysical();
float GetProcessorClockFrequency();
int GetProcessorAPICID();
int GetProcessorCacheXSize(long int);
bool DoesCPUSupportFeature(long int);
const char * GetOSName();
const char * GetHostname();
int GetFullyQualifiedDomainName(kwsys_stl::string &fqdn);
const char * GetOSRelease();
const char * GetOSVersion();
const char * GetOSPlatform();
bool Is64Bits();
unsigned int GetNumberOfLogicalCPU(); // per physical cpu
unsigned int GetNumberOfPhysicalCPU();
bool DoesCPUSupportCPUID();
// Retrieve memory information in megabyte.
size_t GetTotalVirtualMemory();
size_t GetAvailableVirtualMemory();
size_t GetTotalPhysicalMemory();
size_t GetAvailablePhysicalMemory();
LongLong GetProcessId();
// Retrieve memory information in kib
LongLong GetHostMemoryTotal();
LongLong GetHostMemoryAvailable(const char *envVarName);
LongLong GetHostMemoryUsed();
LongLong GetProcMemoryAvailable(
const char *hostLimitEnvVarName,
const char *procLimitEnvVarName);
LongLong GetProcMemoryUsed();
// enable/disable stack trace signal handler.
static
void SetStackTraceOnError(int enable);
// get current stack
static
kwsys_stl::string GetProgramStack(int firstFrame, int wholePath);
/** Run the different checks */
void RunCPUCheck();
void RunOSCheck();
void RunMemoryCheck();
public:
typedef struct tagID
{
int Type;
int Family;
int Model;
int Revision;
int ExtendedFamily;
int ExtendedModel;
kwsys_stl::string ProcessorName;
kwsys_stl::string Vendor;
kwsys_stl::string SerialNumber;
kwsys_stl::string ModelName;
} ID;
typedef struct tagCPUPowerManagement
{
bool HasVoltageID;
bool HasFrequencyID;
bool HasTempSenseDiode;
} CPUPowerManagement;
typedef struct tagCPUExtendedFeatures
{
bool Has3DNow;
bool Has3DNowPlus;
bool SupportsMP;
bool HasMMXPlus;
bool HasSSEMMX;
bool SupportsHyperthreading;
unsigned int LogicalProcessorsPerPhysical;
int APIC_ID;
CPUPowerManagement PowerManagement;
} CPUExtendedFeatures;
typedef struct CPUtagFeatures
{
bool HasFPU;
bool HasTSC;
bool HasMMX;
bool HasSSE;
bool HasSSEFP;
bool HasSSE2;
bool HasIA64;
bool HasAPIC;
bool HasCMOV;
bool HasMTRR;
bool HasACPI;
bool HasSerial;
bool HasThermal;
int CPUSpeed;
int L1CacheSize;
int L2CacheSize;
int L3CacheSize;
CPUExtendedFeatures ExtendedFeatures;
} CPUFeatures;
enum Manufacturer
{
AMD, Intel, NSC, UMC, Cyrix, NexGen, IDT, Rise, Transmeta, Sun, IBM,
Motorola, HP, UnknownManufacturer
};
protected:
// Functions.
bool RetrieveCPUFeatures();
bool RetrieveCPUIdentity();
bool RetrieveCPUCacheDetails();
bool RetrieveClassicalCPUCacheDetails();
bool RetrieveCPUClockSpeed();
bool RetrieveClassicalCPUClockSpeed();
bool RetrieveCPUExtendedLevelSupport(int);
bool RetrieveExtendedCPUFeatures();
bool RetrieveProcessorSerialNumber();
bool RetrieveCPUPowerManagement();
bool RetrieveClassicalCPUIdentity();
bool RetrieveExtendedCPUIdentity();
Manufacturer ChipManufacturer;
CPUFeatures Features;
ID ChipID;
float CPUSpeedInMHz;
unsigned int NumberOfLogicalCPU;
unsigned int NumberOfPhysicalCPU;
int CPUCount();
unsigned char LogicalCPUPerPhysicalCPU();
unsigned char GetAPICId();
bool IsHyperThreadingSupported();
static LongLong GetCyclesDifference(DELAY_FUNC, unsigned int);
// For Linux and Cygwin, /proc/cpuinfo formats are slightly different
bool RetreiveInformationFromCpuInfoFile();
kwsys_stl::string ExtractValueFromCpuInfoFile(kwsys_stl::string buffer,
const char* word, size_t init=0);
bool QueryLinuxMemory();
bool QueryCygwinMemory();
static void Delay (unsigned int);
static void DelayOverhead (unsigned int);
void FindManufacturer(const kwsys_stl::string &family = "");
// For Mac
bool ParseSysCtl();
int CallSwVers(const char *arg, kwsys_stl::string &ver);
void TrimNewline(kwsys_stl::string&);
kwsys_stl::string ExtractValueFromSysCtl(const char* word);
kwsys_stl::string SysCtlBuffer;
// For Solaris
bool QuerySolarisMemory();
bool QuerySolarisProcessor();
kwsys_stl::string ParseValueFromKStat(const char* arguments);
kwsys_stl::string RunProcess(kwsys_stl::vector<const char*> args);
//For Haiku OS
bool QueryHaikuInfo();
//For QNX
bool QueryQNXMemory();
bool QueryQNXProcessor();
//For OpenBSD, FreeBSD, NetBSD, DragonFly
bool QueryBSDMemory();
bool QueryBSDProcessor();
//For HP-UX
bool QueryHPUXMemory();
bool QueryHPUXProcessor();
//For Microsoft Windows
bool QueryWindowsMemory();
//For AIX
bool QueryAIXMemory();
bool QueryProcessorBySysconf();
bool QueryProcessor();
// Evaluate the memory information.
bool QueryMemoryBySysconf();
bool QueryMemory();
size_t TotalVirtualMemory;
size_t AvailableVirtualMemory;
size_t TotalPhysicalMemory;
size_t AvailablePhysicalMemory;
size_t CurrentPositionInFile;
// Operating System information
bool QueryOSInformation();
kwsys_stl::string OSName;
kwsys_stl::string Hostname;
kwsys_stl::string OSRelease;
kwsys_stl::string OSVersion;
kwsys_stl::string OSPlatform;
};
SystemInformation::SystemInformation()
{
this->Implementation = new SystemInformationImplementation;
}
SystemInformation::~SystemInformation()
{
delete this->Implementation;
}
const char * SystemInformation::GetVendorString()
{
return this->Implementation->GetVendorString();
}
const char * SystemInformation::GetVendorID()
{
return this->Implementation->GetVendorID();
}
kwsys_stl::string SystemInformation::GetTypeID()
{
return this->Implementation->GetTypeID();
}
kwsys_stl::string SystemInformation::GetFamilyID()
{
return this->Implementation->GetFamilyID();
}
kwsys_stl::string SystemInformation::GetModelID()
{
return this->Implementation->GetModelID();
}
kwsys_stl::string SystemInformation::GetModelName()
{
return this->Implementation->GetModelName();
}
kwsys_stl::string SystemInformation::GetSteppingCode()
{
return this->Implementation->GetSteppingCode();
}
const char * SystemInformation::GetExtendedProcessorName()
{
return this->Implementation->GetExtendedProcessorName();
}
const char * SystemInformation::GetProcessorSerialNumber()
{
return this->Implementation->GetProcessorSerialNumber();
}
int SystemInformation::GetProcessorCacheSize()
{
return this->Implementation->GetProcessorCacheSize();
}
unsigned int SystemInformation::GetLogicalProcessorsPerPhysical()
{
return this->Implementation->GetLogicalProcessorsPerPhysical();
}
float SystemInformation::GetProcessorClockFrequency()
{
return this->Implementation->GetProcessorClockFrequency();
}
int SystemInformation::GetProcessorAPICID()
{
return this->Implementation->GetProcessorAPICID();
}
int SystemInformation::GetProcessorCacheXSize(long int l)
{
return this->Implementation->GetProcessorCacheXSize(l);
}
bool SystemInformation::DoesCPUSupportFeature(long int i)
{
return this->Implementation->DoesCPUSupportFeature(i);
}
kwsys_stl::string SystemInformation::GetCPUDescription()
{
kwsys_ios::ostringstream oss;
oss
<< this->GetNumberOfPhysicalCPU()
<< " core ";
if (this->GetModelName().empty())
{
oss
<< this->GetProcessorClockFrequency()
<< " MHz "
<< this->GetVendorString()
<< " "
<< this->GetExtendedProcessorName();
}
else
{
oss << this->GetModelName();
}
// remove extra spaces
kwsys_stl::string tmp=oss.str();
size_t pos;
while( (pos=tmp.find(" "))!=kwsys_stl::string::npos)
{
tmp.replace(pos,2," ");
}
return tmp;
}
const char * SystemInformation::GetOSName()
{
return this->Implementation->GetOSName();
}
const char * SystemInformation::GetHostname()
{
return this->Implementation->GetHostname();
}
kwsys_stl::string SystemInformation::GetFullyQualifiedDomainName()
{
kwsys_stl::string fqdn;
this->Implementation->GetFullyQualifiedDomainName(fqdn);
return fqdn;
}
const char * SystemInformation::GetOSRelease()
{
return this->Implementation->GetOSRelease();
}
const char * SystemInformation::GetOSVersion()
{
return this->Implementation->GetOSVersion();
}
const char * SystemInformation::GetOSPlatform()
{
return this->Implementation->GetOSPlatform();
}
int SystemInformation::GetOSIsWindows()
{
#if defined(_WIN32)
return 1;
#else
return 0;
#endif
}
int SystemInformation::GetOSIsLinux()
{
#if defined(__linux)
return 1;
#else
return 0;
#endif
}
int SystemInformation::GetOSIsApple()
{
#if defined(__APPLE__)
return 1;
#else
return 0;
#endif
}
kwsys_stl::string SystemInformation::GetOSDescription()
{
kwsys_ios::ostringstream oss;
oss
<< this->GetOSName()
<< " "
<< this->GetOSRelease()
<< " "
<< this->GetOSVersion();
return oss.str();
}
bool SystemInformation::Is64Bits()
{
return this->Implementation->Is64Bits();
}
unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu
{
return this->Implementation->GetNumberOfLogicalCPU();
}
unsigned int SystemInformation::GetNumberOfPhysicalCPU()
{
return this->Implementation->GetNumberOfPhysicalCPU();
}
bool SystemInformation::DoesCPUSupportCPUID()
{
return this->Implementation->DoesCPUSupportCPUID();
}
// Retrieve memory information in megabyte.
size_t SystemInformation::GetTotalVirtualMemory()
{
return this->Implementation->GetTotalVirtualMemory();
}
size_t SystemInformation::GetAvailableVirtualMemory()
{
return this->Implementation->GetAvailableVirtualMemory();
}
size_t SystemInformation::GetTotalPhysicalMemory()
{
return this->Implementation->GetTotalPhysicalMemory();
}
size_t SystemInformation::GetAvailablePhysicalMemory()
{
return this->Implementation->GetAvailablePhysicalMemory();
}
kwsys_stl::string SystemInformation::GetMemoryDescription(
const char *hostLimitEnvVarName,
const char *procLimitEnvVarName)
{
kwsys_ios::ostringstream oss;
oss
<< "Host Total: "
<< iostreamLongLong(this->GetHostMemoryTotal())
<< " KiB, Host Available: "
<< iostreamLongLong(this->GetHostMemoryAvailable(hostLimitEnvVarName))
<< " KiB, Process Available: "
<< iostreamLongLong(
this->GetProcMemoryAvailable(hostLimitEnvVarName,procLimitEnvVarName))
<< " KiB";
return oss.str();
}
// host memory info in units of KiB.
SystemInformation::LongLong SystemInformation::GetHostMemoryTotal()
{
return this->Implementation->GetHostMemoryTotal();
}
SystemInformation::LongLong
SystemInformation::GetHostMemoryAvailable(const char *hostLimitEnvVarName)
{
return this->Implementation->GetHostMemoryAvailable(hostLimitEnvVarName);
}
SystemInformation::LongLong SystemInformation::GetHostMemoryUsed()
{
return this->Implementation->GetHostMemoryUsed();
}
// process memory info in units of KiB.
SystemInformation::LongLong
SystemInformation::GetProcMemoryAvailable(
const char *hostLimitEnvVarName,
const char *procLimitEnvVarName)
{
return this->Implementation->GetProcMemoryAvailable(
hostLimitEnvVarName,
procLimitEnvVarName);
}
SystemInformation::LongLong SystemInformation::GetProcMemoryUsed()
{
return this->Implementation->GetProcMemoryUsed();
}
SystemInformation::LongLong SystemInformation::GetProcessId()
{
return this->Implementation->GetProcessId();
}
void SystemInformation::SetStackTraceOnError(int enable)
{
SystemInformationImplementation::SetStackTraceOnError(enable);
}
kwsys_stl::string SystemInformation::GetProgramStack(int firstFrame, int wholePath)
{
return SystemInformationImplementation::GetProgramStack(firstFrame, wholePath);
}
/** Run the different checks */
void SystemInformation::RunCPUCheck()
{
this->Implementation->RunCPUCheck();
}
void SystemInformation::RunOSCheck()
{
this->Implementation->RunOSCheck();
}
void SystemInformation::RunMemoryCheck()
{
this->Implementation->RunMemoryCheck();
}
// --------------------------------------------------------------
// SystemInformationImplementation starts here
#define STORE_TLBCACHE_INFO(x,y) x = (x < y) ? y : x
#define TLBCACHE_INFO_UNITS (15)
#define CLASSICAL_CPU_FREQ_LOOP 10000000
#define RDTSC_INSTRUCTION _asm _emit 0x0f _asm _emit 0x31
#define MMX_FEATURE 0x00000001
#define MMX_PLUS_FEATURE 0x00000002
#define SSE_FEATURE 0x00000004
#define SSE2_FEATURE 0x00000008
#define AMD_3DNOW_FEATURE 0x00000010
#define AMD_3DNOW_PLUS_FEATURE 0x00000020
#define IA64_FEATURE 0x00000040
#define MP_CAPABLE 0x00000080
#define HYPERTHREAD_FEATURE 0x00000100
#define SERIALNUMBER_FEATURE 0x00000200
#define APIC_FEATURE 0x00000400
#define SSE_FP_FEATURE 0x00000800
#define SSE_MMX_FEATURE 0x00001000
#define CMOV_FEATURE 0x00002000
#define MTRR_FEATURE 0x00004000
#define L1CACHE_FEATURE 0x00008000
#define L2CACHE_FEATURE 0x00010000
#define L3CACHE_FEATURE 0x00020000
#define ACPI_FEATURE 0x00040000
#define THERMALMONITOR_FEATURE 0x00080000
#define TEMPSENSEDIODE_FEATURE 0x00100000
#define FREQUENCYID_FEATURE 0x00200000
#define VOLTAGEID_FREQUENCY 0x00400000
// Status Flag
#define HT_NOT_CAPABLE 0
#define HT_ENABLED 1
#define HT_DISABLED 2
#define HT_SUPPORTED_NOT_ENABLED 3
#define HT_CANNOT_DETECT 4
// EDX[28] Bit 28 is set if HT is supported
#define HT_BIT 0x10000000
// EAX[11:8] Bit 8-11 contains family processor ID.
#define FAMILY_ID 0x0F00
#define PENTIUM4_ID 0x0F00
// EAX[23:20] Bit 20-23 contains extended family processor ID
#define EXT_FAMILY_ID 0x0F00000
// EBX[23:16] Bit 16-23 in ebx contains the number of logical
#define NUM_LOGICAL_BITS 0x00FF0000
// processors per physical processor when execute cpuid with
// eax set to 1
// EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique
#define INITIAL_APIC_ID_BITS 0xFF000000
// initial APIC ID for the processor this code is running on.
// Default value = 0xff if HT is not supported
// Hide implementation details in an anonymous namespace.
namespace {
// *****************************************************************************
#if defined(__linux) || defined(__APPLE__)
int LoadLines(
FILE *file,
kwsys_stl::vector<kwsys_stl::string> &lines)
{
// Load each line in the given file into a the vector.
int nRead=0;
const int bufSize=1024;
char buf[bufSize]={'\0'};
while (!feof(file) && !ferror(file))
{
errno=0;
if (fgets(buf,bufSize,file) == 0)
{
if (ferror(file) && (errno==EINTR))
{
clearerr(file);
}
continue;
}
char *pBuf=buf;
while(*pBuf)
{
if (*pBuf=='\n') *pBuf='\0';
pBuf+=1;
}
lines.push_back(buf);
++nRead;
}
if (ferror(file))
{
return 0;
}
return nRead;
}
# if defined(__linux)
// *****************************************************************************
int LoadLines(
const char *fileName,
kwsys_stl::vector<kwsys_stl::string> &lines)
{
FILE *file=fopen(fileName,"r");
if (file==0)
{
return 0;
}
int nRead=LoadLines(file,lines);
fclose(file);
return nRead;
}
# endif
// ****************************************************************************
template<typename T>
int NameValue(
kwsys_stl::vector<kwsys_stl::string> &lines,
kwsys_stl::string name, T &value)
{
size_t nLines=lines.size();
for (size_t i=0; i<nLines; ++i)
{
size_t at=lines[i].find(name);
if (at==kwsys_stl::string::npos)
{
continue;
}
kwsys_ios::istringstream is(lines[i].substr(at+name.size()));
is >> value;
return 0;
}
return -1;
}
#endif
#if defined(__linux)
// ****************************************************************************
template<typename T>
int GetFieldsFromFile(
const char *fileName,
const char **fieldNames,
T *values)
{
kwsys_stl::vector<kwsys_stl::string> fields;
if (!LoadLines(fileName,fields))
{
return -1;
}
int i=0;
while (fieldNames[i]!=NULL)
{
int ierr=NameValue(fields,fieldNames[i],values[i]);
if (ierr)
{
return -(i+2);
}
i+=1;
}
return 0;
}
// ****************************************************************************
template<typename T>
int GetFieldFromFile(
const char *fileName,
const char *fieldName,
T &value)
{
const char *fieldNames[2]={fieldName,NULL};
T values[1]={T(0)};
int ierr=GetFieldsFromFile(fileName,fieldNames,values);
if (ierr)
{
return ierr;
}
value=values[0];
return 0;
}
#endif
// ****************************************************************************
#if defined(__APPLE__)
template<typename T>
int GetFieldsFromCommand(
const char *command,
const char **fieldNames,
T *values)
{
FILE *file=popen(command,"r");
if (file==0)
{
return -1;
}
kwsys_stl::vector<kwsys_stl::string> fields;
int nl=LoadLines(file,fields);
pclose(file);
if (nl==0)
{
return -1;
}
int i=0;
while (fieldNames[i]!=NULL)
{
int ierr=NameValue(fields,fieldNames[i],values[i]);
if (ierr)
{
return -(i+2);
}
i+=1;
}
return 0;
}
#endif
// ****************************************************************************
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
void StacktraceSignalHandler(
int sigNo,
siginfo_t *sigInfo,
void * /*sigContext*/)
{
#if defined(__linux) || defined(__APPLE__)
kwsys_ios::ostringstream oss;
oss
<< kwsys_ios::endl
<< "=========================================================" << kwsys_ios::endl
<< "Process id " << getpid() << " ";
switch (sigNo)
{
case SIGINT:
oss << "Caught SIGINT";
break;
case SIGTERM:
oss << "Caught SIGTERM";
break;
case SIGABRT:
oss << "Caught SIGABRT";
break;
case SIGFPE:
oss
<< "Caught SIGFPE at "
<< (sigInfo->si_addr==0?"0x":"")
<< sigInfo->si_addr
<< " ";
switch (sigInfo->si_code)
{
# if defined(FPE_INTDIV)
case FPE_INTDIV:
oss << "integer division by zero";
break;
# endif
# if defined(FPE_INTOVF)
case FPE_INTOVF:
oss << "integer overflow";
break;
# endif
case FPE_FLTDIV:
oss << "floating point divide by zero";
break;
case FPE_FLTOVF:
oss << "floating point overflow";
break;
case FPE_FLTUND:
oss << "floating point underflow";
break;
case FPE_FLTRES:
oss << "floating point inexact result";
break;
case FPE_FLTINV:
oss << "floating point invalid operation";
break;
#if defined(FPE_FLTSUB)
case FPE_FLTSUB:
oss << "floating point subscript out of range";
break;
#endif
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
case SIGSEGV:
oss
<< "Caught SIGSEGV at "
<< (sigInfo->si_addr==0?"0x":"")
<< sigInfo->si_addr
<< " ";
switch (sigInfo->si_code)
{
case SEGV_MAPERR:
oss << "address not mapped to object";
break;
case SEGV_ACCERR:
oss << "invalid permission for mapped object";
break;
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
case SIGBUS:
oss
<< "Caught SIGBUS at "
<< (sigInfo->si_addr==0?"0x":"")
<< sigInfo->si_addr
<< " ";
switch (sigInfo->si_code)
{
case BUS_ADRALN:
oss << "invalid address alignment";
break;
# if defined(BUS_ADRERR)
case BUS_ADRERR:
oss << "nonexistent physical address";
break;
# endif
# if defined(BUS_OBJERR)
case BUS_OBJERR:
oss << "object-specific hardware error";
break;
# endif
# if defined(BUS_MCEERR_AR)
case BUS_MCEERR_AR:
oss << "Hardware memory error consumed on a machine check; action required.";
break;
# endif
# if defined(BUS_MCEERR_AO)
case BUS_MCEERR_AO:
oss << "Hardware memory error detected in process but not consumed; action optional.";
break;
# endif
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
case SIGILL:
oss
<< "Caught SIGILL at "
<< (sigInfo->si_addr==0?"0x":"")
<< sigInfo->si_addr
<< " ";
switch (sigInfo->si_code)
{
case ILL_ILLOPC:
oss << "illegal opcode";
break;
# if defined(ILL_ILLOPN)
case ILL_ILLOPN:
oss << "illegal operand";
break;
# endif
# if defined(ILL_ILLADR)
case ILL_ILLADR:
oss << "illegal addressing mode.";
break;
# endif
case ILL_ILLTRP:
oss << "illegal trap";
case ILL_PRVOPC:
oss << "privileged opcode";
break;
# if defined(ILL_PRVREG)
case ILL_PRVREG:
oss << "privileged register";
break;
# endif
# if defined(ILL_COPROC)
case ILL_COPROC:
oss << "co-processor error";
break;
# endif
# if defined(ILL_BADSTK)
case ILL_BADSTK:
oss << "internal stack error";
break;
# endif
default:
oss << "code " << sigInfo->si_code;
break;
}
break;
default:
oss << "Caught " << sigNo << " code " << sigInfo->si_code;
break;
}
oss
<< kwsys_ios::endl
<< "Program Stack:" << kwsys_ios::endl
<< SystemInformationImplementation::GetProgramStack(2,0)
<< "=========================================================" << kwsys_ios::endl;
kwsys_ios::cerr << oss.str() << kwsys_ios::endl;
// restore the previously registered handlers
// and abort
SystemInformationImplementation::SetStackTraceOnError(0);
abort();
#else
// avoid warning C4100
(void)sigNo;
(void)sigInfo;
#endif
}
#endif
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
#define safes(_arg)((_arg)?(_arg):"???")
// Description:
// A container for symbol properties. Each instance
// must be Initialized.
class SymbolProperties
{
public:
SymbolProperties();
// Description:
// The SymbolProperties instance must be initialized by
// passing a stack address.
void Initialize(void *address);
// Description:
// Get the symbol's stack address.
void *GetAddress() const { return this->Address; }
// Description:
// If not set paths will be removed. eg, from a binary
// or source file.
void SetReportPath(int rp){ this->ReportPath=rp; }
// Description:
// Set/Get the name of the binary file that the symbol
// is found in.
void SetBinary(const char *binary)
{ this->Binary=safes(binary); }
kwsys_stl::string GetBinary() const;
// Description:
// Set the name of the function that the symbol is found in.
// If c++ demangling is supported it will be demangled.
void SetFunction(const char *function)
{ this->Function=this->Demangle(function); }
kwsys_stl::string GetFunction() const
{ return this->Function; }
// Description:
// Set/Get the name of the source file where the symbol
// is defined.
void SetSourceFile(const char *sourcefile)
{ this->SourceFile=safes(sourcefile); }
kwsys_stl::string GetSourceFile() const
{ return this->GetFileName(this->SourceFile); }
// Description:
// Set/Get the line number where the symbol is defined
void SetLineNumber(long linenumber){ this->LineNumber=linenumber; }
long GetLineNumber() const { return this->LineNumber; }
// Description:
// Set the address where the biinary image is mapped
// into memory.
void SetBinaryBaseAddress(void *address)
{ this->BinaryBaseAddress=address; }
private:
void *GetRealAddress() const
{ return (void*)((char*)this->Address-(char*)this->BinaryBaseAddress); }
kwsys_stl::string GetFileName(const kwsys_stl::string &path) const;
kwsys_stl::string Demangle(const char *symbol) const;
private:
kwsys_stl::string Binary;
void *BinaryBaseAddress;
void *Address;
kwsys_stl::string SourceFile;
kwsys_stl::string Function;
long LineNumber;
int ReportPath;
};
// --------------------------------------------------------------------------
kwsys_ios::ostream &operator<<(
kwsys_ios::ostream &os,
const SymbolProperties &sp)
{
#if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
os
<< kwsys_ios::hex << sp.GetAddress() << " : "
<< sp.GetFunction()
<< " [(" << sp.GetBinary() << ") "
<< sp.GetSourceFile() << ":"
<< kwsys_ios::dec << sp.GetLineNumber() << "]";
#elif defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
void *addr = sp.GetAddress();
char **syminfo = backtrace_symbols(&addr,1);
os << safes(syminfo[0]);
free(syminfo);
#else
(void)os;
(void)sp;
#endif
return os;
}
// --------------------------------------------------------------------------
SymbolProperties::SymbolProperties()
{
// not using an initializer list
// to avoid some PGI compiler warnings
this->SetBinary("???");
this->SetBinaryBaseAddress(NULL);
this->Address = NULL;
this->SetSourceFile("???");
this->SetFunction("???");
this->SetLineNumber(-1);
this->SetReportPath(0);
// avoid PGI compiler warnings
this->GetRealAddress();
this->GetFunction();
this->GetSourceFile();
this->GetLineNumber();
}
// --------------------------------------------------------------------------
kwsys_stl::string SymbolProperties::GetFileName(const kwsys_stl::string &path) const
{
kwsys_stl::string file(path);
if (!this->ReportPath)
{
size_t at = file.rfind("/");
if (at!=kwsys_stl::string::npos)
{
file = file.substr(at+1,kwsys_stl::string::npos);
}
}
return file;
}
// --------------------------------------------------------------------------
kwsys_stl::string SymbolProperties::GetBinary() const
{
// only linux has proc fs
#if defined(__linux__)
if (this->Binary=="/proc/self/exe")
{
kwsys_stl::string binary;
char buf[1024]={'\0'};
ssize_t ll=0;
if ((ll=readlink("/proc/self/exe",buf,1024))>0)
{
buf[ll]='\0';
binary=buf;
}
else
{
binary="/proc/self/exe";
}
return this->GetFileName(binary);
}
#endif
return this->GetFileName(this->Binary);
}
// --------------------------------------------------------------------------
kwsys_stl::string SymbolProperties::Demangle(const char *symbol) const
{
kwsys_stl::string result = safes(symbol);
#if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
int status = 0;
size_t bufferLen = 1024;
char *buffer = (char*)malloc(1024);
char *demangledSymbol =
abi::__cxa_demangle(symbol, buffer, &bufferLen, &status);
if (!status)
{
result = demangledSymbol;
}
free(buffer);
#else
(void)symbol;
#endif
return result;
}
// --------------------------------------------------------------------------
void SymbolProperties::Initialize(void *address)
{
this->Address = address;
#if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
// first fallback option can demangle c++ functions
Dl_info info;
int ierr=dladdr(this->Address,&info);
if (ierr && info.dli_sname && info.dli_saddr)
{
this->SetBinary(info.dli_fname);
this->SetFunction(info.dli_sname);
}
#else
// second fallback use builtin backtrace_symbols
// to decode the bactrace.
#endif
}
#endif // don't define this class if we're not using it
} // anonymous namespace
SystemInformationImplementation::SystemInformationImplementation()
{
this->TotalVirtualMemory = 0;
this->AvailableVirtualMemory = 0;
this->TotalPhysicalMemory = 0;
this->AvailablePhysicalMemory = 0;
this->CurrentPositionInFile = 0;
this->ChipManufacturer = UnknownManufacturer;
memset(&this->Features, 0, sizeof(CPUFeatures));
this->ChipID.Type = 0;
this->ChipID.Family = 0;
this->ChipID.Model = 0;
this->ChipID.Revision = 0;
this->ChipID.ExtendedFamily = 0;
this->ChipID.ExtendedModel = 0;
this->CPUSpeedInMHz = 0;
this->NumberOfLogicalCPU = 0;
this->NumberOfPhysicalCPU = 0;
this->OSName = "";
this->Hostname = "";
this->OSRelease = "";
this->OSVersion = "";
this->OSPlatform = "";
}
SystemInformationImplementation::~SystemInformationImplementation()
{
}
void SystemInformationImplementation::RunCPUCheck()
{
#ifdef WIN32
// Check to see if this processor supports CPUID.
bool supportsCPUID = DoesCPUSupportCPUID();
if (supportsCPUID)
{
// Retrieve the CPU details.
RetrieveCPUIdentity();
this->FindManufacturer();
RetrieveCPUFeatures();
}
// These two may be called without support for the CPUID instruction.
// (But if the instruction is there, they should be called *after*
// the above call to RetrieveCPUIdentity... that's why the two if
// blocks exist with the same "if (supportsCPUID)" logic...
//
if (!RetrieveCPUClockSpeed())
{
RetrieveClassicalCPUClockSpeed();
}
if (supportsCPUID)
{
// Retrieve cache information.
if (!RetrieveCPUCacheDetails())
{
RetrieveClassicalCPUCacheDetails();
}
// Retrieve the extended CPU details.
if (!RetrieveExtendedCPUIdentity())
{
RetrieveClassicalCPUIdentity();
}
RetrieveExtendedCPUFeatures();
RetrieveCPUPowerManagement();
// Now attempt to retrieve the serial number (if possible).
RetrieveProcessorSerialNumber();
}
this->CPUCount();
#elif defined(__APPLE__)
this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
this->QuerySolarisProcessor();
#elif defined(__HAIKU__)
this->QueryHaikuInfo();
#elif defined(__QNX__)
this->QueryQNXProcessor();
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
this->QueryBSDProcessor();
#elif defined(__hpux)
this->QueryHPUXProcessor();
#elif defined(__linux) || defined(__CYGWIN__)
this->RetreiveInformationFromCpuInfoFile();
#else
this->QueryProcessor();
#endif
}
void SystemInformationImplementation::RunOSCheck()
{
this->QueryOSInformation();
}
void SystemInformationImplementation::RunMemoryCheck()
{
#if defined(__APPLE__)
this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
this->QuerySolarisMemory();
#elif defined(__HAIKU__)
this->QueryHaikuInfo();
#elif defined(__QNX__)
this->QueryQNXMemory();
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
this->QueryBSDMemory();
#elif defined(__CYGWIN__)
this->QueryCygwinMemory();
#elif defined(_WIN32)
this->QueryWindowsMemory();
#elif defined(__hpux)
this->QueryHPUXMemory();
#elif defined(__linux)
this->QueryLinuxMemory();
#elif defined(_AIX)
this->QueryAIXMemory();
#else
this->QueryMemory();
#endif
}
/** Get the vendor string */
const char * SystemInformationImplementation::GetVendorString()
{
return this->ChipID.Vendor.c_str();
}
/** Get the OS Name */
const char * SystemInformationImplementation::GetOSName()
{
return this->OSName.c_str();
}
/** Get the hostname */
const char* SystemInformationImplementation::GetHostname()
{
if (this->Hostname.empty())
{
this->Hostname="localhost";
#if defined(_WIN32)
WORD wVersionRequested;
WSADATA wsaData;
char name[255];
wVersionRequested = MAKEWORD(2,0);
if ( WSAStartup( wVersionRequested, &wsaData ) == 0 )
{
gethostname(name,sizeof(name));
WSACleanup( );
}
this->Hostname = name;
#else
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if(errorFlag == 0)
{
this->Hostname = unameInfo.nodename;
}
#endif
}
return this->Hostname.c_str();
}
/** Get the FQDN */
int SystemInformationImplementation::GetFullyQualifiedDomainName(
kwsys_stl::string &fqdn)
{
// in the event of absolute failure return localhost.
fqdn="localhost";
#if defined(_WIN32)
int ierr;
// TODO - a more robust implementation for windows, see comments
// in unix implementation.
WSADATA wsaData;
WORD ver=MAKEWORD(2,0);
ierr=WSAStartup(ver,&wsaData);
if (ierr)
{
return -1;
}
char base[256]={'\0'};
ierr=gethostname(base,256);
if (ierr)
{
WSACleanup();
return -2;
}
fqdn=base;
HOSTENT *hent=gethostbyname(base);
if (hent)
{
fqdn=hent->h_name;
}
WSACleanup();
return 0;
#elif defined(KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN)
// gethostname typical returns an alias for loopback interface
// we want the fully qualified domain name. Because there are
// any number of interfaces on this system we look for the
// first of these that contains the name returned by gethostname
// and is longer. failing that we return gethostname and indicate
// with a failure code. Return of a failure code is not necessarilly
// an indication of an error. for instance gethostname may return
// the fully qualified domain name, or there may not be one if the
// system lives on a private network such as in the case of a cluster
// node.
int ierr=0;
char base[NI_MAXHOST];
ierr=gethostname(base,NI_MAXHOST);
if (ierr)
{
return -1;
}
size_t baseSize=strlen(base);
fqdn=base;
struct ifaddrs *ifas;
struct ifaddrs *ifa;
ierr=getifaddrs(&ifas);
if (ierr)
{
return -2;
}
for (ifa=ifas; ifa!=NULL; ifa=ifa->ifa_next)
{
int fam = ifa->ifa_addr? ifa->ifa_addr->sa_family : -1;
if ((fam==AF_INET) || (fam==AF_INET6))
{
char host[NI_MAXHOST]={'\0'};
const size_t addrlen
= (fam==AF_INET?sizeof(struct sockaddr_in):sizeof(struct sockaddr_in6));
ierr=getnameinfo(
ifa->ifa_addr,
static_cast<socklen_t>(addrlen),
host,
NI_MAXHOST,
NULL,
0,
NI_NAMEREQD);
if (ierr)
{
// don't report the failure now since we may succeed on another
// interface. If all attempts fail then return the failure code.
ierr=-3;
continue;
}
kwsys_stl::string candidate=host;
if ((candidate.find(base)!=kwsys_stl::string::npos) && baseSize<candidate.size())
{
// success, stop now.
ierr=0;
fqdn=candidate;
break;
}
}
}
freeifaddrs(ifas);
return ierr;
#else
/* TODO: Implement on more platforms. */
fqdn=this->GetHostname();
return -1;
#endif
}
/** Get the OS release */
const char* SystemInformationImplementation::GetOSRelease()
{
return this->OSRelease.c_str();
}
/** Get the OS version */
const char* SystemInformationImplementation::GetOSVersion()
{
return this->OSVersion.c_str();
}
/** Get the OS platform */
const char* SystemInformationImplementation::GetOSPlatform()
{
return this->OSPlatform.c_str();
}
/** Get the vendor ID */
const char * SystemInformationImplementation::GetVendorID()
{
// Return the vendor ID.
switch (this->ChipManufacturer)
{
case Intel:
return "Intel Corporation";
case AMD:
return "Advanced Micro Devices";
case NSC:
return "National Semiconductor";
case Cyrix:
return "Cyrix Corp., VIA Inc.";
case NexGen:
return "NexGen Inc., Advanced Micro Devices";
case IDT:
return "IDT\\Centaur, Via Inc.";
case UMC:
return "United Microelectronics Corp.";
case Rise:
return "Rise";
case Transmeta:
return "Transmeta";
case Sun:
return "Sun Microelectronics";
case IBM:
return "IBM";
case Motorola:
return "Motorola";
case HP:
return "Hewlett-Packard";
default:
return "Unknown Manufacturer";
}
}
/** Return the type ID of the CPU */
kwsys_stl::string SystemInformationImplementation::GetTypeID()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Type;
return str.str();
}
/** Return the family of the CPU present */
kwsys_stl::string SystemInformationImplementation::GetFamilyID()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Family;
return str.str();
}
// Return the model of CPU present */
kwsys_stl::string SystemInformationImplementation::GetModelID()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Model;
return str.str();
}
// Return the model name of CPU present */
kwsys_stl::string SystemInformationImplementation::GetModelName()
{
return this->ChipID.ModelName;
}
/** Return the stepping code of the CPU present. */
kwsys_stl::string SystemInformationImplementation::GetSteppingCode()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Revision;
return str.str();
}
/** Return the stepping code of the CPU present. */
const char * SystemInformationImplementation::GetExtendedProcessorName()
{
return this->ChipID.ProcessorName.c_str();
}
/** Return the serial number of the processor
* in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */
const char * SystemInformationImplementation::GetProcessorSerialNumber()
{
return this->ChipID.SerialNumber.c_str();
}
/** Return the logical processors per physical */
unsigned int SystemInformationImplementation::GetLogicalProcessorsPerPhysical()
{
return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical;
}
/** Return the processor clock frequency. */
float SystemInformationImplementation::GetProcessorClockFrequency()
{
return this->CPUSpeedInMHz;
}
/** Return the APIC ID. */
int SystemInformationImplementation::GetProcessorAPICID()
{
return this->Features.ExtendedFeatures.APIC_ID;
}
/** Return the L1 cache size. */
int SystemInformationImplementation::GetProcessorCacheSize()
{
return this->Features.L1CacheSize;
}
/** Return the chosen cache size. */
int SystemInformationImplementation::GetProcessorCacheXSize(long int dwCacheID)
{
switch (dwCacheID)
{
case L1CACHE_FEATURE:
return this->Features.L1CacheSize;
case L2CACHE_FEATURE:
return this->Features.L2CacheSize;
case L3CACHE_FEATURE:
return this->Features.L3CacheSize;
}
return -1;
}
bool SystemInformationImplementation::DoesCPUSupportFeature(long int dwFeature)
{
bool bHasFeature = false;
// Check for MMX instructions.
if (((dwFeature & MMX_FEATURE) != 0) && this->Features.HasMMX) bHasFeature = true;
// Check for MMX+ instructions.
if (((dwFeature & MMX_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.HasMMXPlus) bHasFeature = true;
// Check for SSE FP instructions.
if (((dwFeature & SSE_FEATURE) != 0) && this->Features.HasSSE) bHasFeature = true;
// Check for SSE FP instructions.
if (((dwFeature & SSE_FP_FEATURE) != 0) && this->Features.HasSSEFP) bHasFeature = true;
// Check for SSE MMX instructions.
if (((dwFeature & SSE_MMX_FEATURE) != 0) && this->Features.ExtendedFeatures.HasSSEMMX) bHasFeature = true;
// Check for SSE2 instructions.
if (((dwFeature & SSE2_FEATURE) != 0) && this->Features.HasSSE2) bHasFeature = true;
// Check for 3DNow! instructions.
if (((dwFeature & AMD_3DNOW_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNow) bHasFeature = true;
// Check for 3DNow+ instructions.
if (((dwFeature & AMD_3DNOW_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNowPlus) bHasFeature = true;
// Check for IA64 instructions.
if (((dwFeature & IA64_FEATURE) != 0) && this->Features.HasIA64) bHasFeature = true;
// Check for MP capable.
if (((dwFeature & MP_CAPABLE) != 0) && this->Features.ExtendedFeatures.SupportsMP) bHasFeature = true;
// Check for a serial number for the processor.
if (((dwFeature & SERIALNUMBER_FEATURE) != 0) && this->Features.HasSerial) bHasFeature = true;
// Check for a local APIC in the processor.
if (((dwFeature & APIC_FEATURE) != 0) && this->Features.HasAPIC) bHasFeature = true;
// Check for CMOV instructions.
if (((dwFeature & CMOV_FEATURE) != 0) && this->Features.HasCMOV) bHasFeature = true;
// Check for MTRR instructions.
if (((dwFeature & MTRR_FEATURE) != 0) && this->Features.HasMTRR) bHasFeature = true;
// Check for L1 cache size.
if (((dwFeature & L1CACHE_FEATURE) != 0) && (this->Features.L1CacheSize != -1)) bHasFeature = true;
// Check for L2 cache size.
if (((dwFeature & L2CACHE_FEATURE) != 0) && (this->Features.L2CacheSize != -1)) bHasFeature = true;
// Check for L3 cache size.
if (((dwFeature & L3CACHE_FEATURE) != 0) && (this->Features.L3CacheSize != -1)) bHasFeature = true;
// Check for ACPI capability.
if (((dwFeature & ACPI_FEATURE) != 0) && this->Features.HasACPI) bHasFeature = true;
// Check for thermal monitor support.
if (((dwFeature & THERMALMONITOR_FEATURE) != 0) && this->Features.HasThermal) bHasFeature = true;
// Check for temperature sensing diode support.
if (((dwFeature & TEMPSENSEDIODE_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode) bHasFeature = true;
// Check for frequency ID support.
if (((dwFeature & FREQUENCYID_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID) bHasFeature = true;
// Check for voltage ID support.
if (((dwFeature & VOLTAGEID_FREQUENCY) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasVoltageID) bHasFeature = true;
return bHasFeature;
}
void SystemInformationImplementation::Delay(unsigned int uiMS)
{
#ifdef WIN32
LARGE_INTEGER Frequency, StartCounter, EndCounter;
__int64 x;
// Get the frequency of the high performance counter.
if (!QueryPerformanceFrequency (&Frequency)) return;
x = Frequency.QuadPart / 1000 * uiMS;
// Get the starting position of the counter.
QueryPerformanceCounter (&StartCounter);
do {
// Get the ending position of the counter.
QueryPerformanceCounter (&EndCounter);
} while (EndCounter.QuadPart - StartCounter.QuadPart < x);
#endif
(void)uiMS;
}
bool SystemInformationImplementation::DoesCPUSupportCPUID()
{
#if USE_CPUID
int dummy[4] = { 0, 0, 0, 0 };
#if USE_ASM_INSTRUCTIONS
return call_cpuid(0, dummy);
#else
call_cpuid(0, dummy);
return dummy[0] || dummy[1] || dummy[2] || dummy[3];
#endif
#else
// Assume no cpuid instruction.
return false;
#endif
}
bool SystemInformationImplementation::RetrieveCPUFeatures()
{
#if USE_CPUID
int cpuinfo[4] = { 0, 0, 0, 0 };
if (!call_cpuid(1, cpuinfo))
{
return false;
}
// Retrieve the features of CPU present.
this->Features.HasFPU = ((cpuinfo[3] & 0x00000001) != 0); // FPU Present --> Bit 0
this->Features.HasTSC = ((cpuinfo[3] & 0x00000010) != 0); // TSC Present --> Bit 4
this->Features.HasAPIC = ((cpuinfo[3] & 0x00000200) != 0); // APIC Present --> Bit 9
this->Features.HasMTRR = ((cpuinfo[3] & 0x00001000) != 0); // MTRR Present --> Bit 12
this->Features.HasCMOV = ((cpuinfo[3] & 0x00008000) != 0); // CMOV Present --> Bit 15
this->Features.HasSerial = ((cpuinfo[3] & 0x00040000) != 0); // Serial Present --> Bit 18
this->Features.HasACPI = ((cpuinfo[3] & 0x00400000) != 0); // ACPI Capable --> Bit 22
this->Features.HasMMX = ((cpuinfo[3] & 0x00800000) != 0); // MMX Present --> Bit 23
this->Features.HasSSE = ((cpuinfo[3] & 0x02000000) != 0); // SSE Present --> Bit 25
this->Features.HasSSE2 = ((cpuinfo[3] & 0x04000000) != 0); // SSE2 Present --> Bit 26
this->Features.HasThermal = ((cpuinfo[3] & 0x20000000) != 0); // Thermal Monitor Present --> Bit 29
this->Features.HasIA64 = ((cpuinfo[3] & 0x40000000) != 0); // IA64 Present --> Bit 30
#if USE_ASM_INSTRUCTIONS
// Retrieve extended SSE capabilities if SSE is available.
if (this->Features.HasSSE) {
// Attempt to __try some SSE FP instructions.
__try
{
// Perform: orps xmm0, xmm0
_asm
{
_emit 0x0f
_emit 0x56
_emit 0xc0
}
// SSE FP capable processor.
this->Features.HasSSEFP = true;
}
__except(1)
{
// bad instruction - processor or OS cannot handle SSE FP.
this->Features.HasSSEFP = false;
}
}
else
{
// Set the advanced SSE capabilities to not available.
this->Features.HasSSEFP = false;
}
#else
this->Features.HasSSEFP = false;
#endif
// Retrieve Intel specific extended features.
if (this->ChipManufacturer == Intel)
{
this->Features.ExtendedFeatures.SupportsHyperthreading = ((cpuinfo[3] & 0x10000000) != 0); // Intel specific: Hyperthreading --> Bit 28
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = (this->Features.ExtendedFeatures.SupportsHyperthreading) ? ((cpuinfo[1] & 0x00FF0000) >> 16) : 1;
if ((this->Features.ExtendedFeatures.SupportsHyperthreading) && (this->Features.HasAPIC))
{
// Retrieve APIC information if there is one present.
this->Features.ExtendedFeatures.APIC_ID = ((cpuinfo[1] & 0xFF000000) >> 24);
}
}
return true;
#else
return false;
#endif
}
/** Find the manufacturer given the vendor id */
void SystemInformationImplementation::FindManufacturer(const kwsys_stl::string& family)
{
if (this->ChipID.Vendor == "GenuineIntel") this->ChipManufacturer = Intel; // Intel Corp.
else if (this->ChipID.Vendor == "UMC UMC UMC ") this->ChipManufacturer = UMC; // United Microelectronics Corp.
else if (this->ChipID.Vendor == "AuthenticAMD") this->ChipManufacturer = AMD; // Advanced Micro Devices
else if (this->ChipID.Vendor == "AMD ISBETTER") this->ChipManufacturer = AMD; // Advanced Micro Devices (1994)
else if (this->ChipID.Vendor == "CyrixInstead") this->ChipManufacturer = Cyrix; // Cyrix Corp., VIA Inc.
else if (this->ChipID.Vendor == "NexGenDriven") this->ChipManufacturer = NexGen; // NexGen Inc. (now AMD)
else if (this->ChipID.Vendor == "CentaurHauls") this->ChipManufacturer = IDT; // IDT/Centaur (now VIA)
else if (this->ChipID.Vendor == "RiseRiseRise") this->ChipManufacturer = Rise; // Rise
else if (this->ChipID.Vendor == "GenuineTMx86") this->ChipManufacturer = Transmeta; // Transmeta
else if (this->ChipID.Vendor == "TransmetaCPU") this->ChipManufacturer = Transmeta; // Transmeta
else if (this->ChipID.Vendor == "Geode By NSC") this->ChipManufacturer = NSC; // National Semiconductor
else if (this->ChipID.Vendor == "Sun") this->ChipManufacturer = Sun; // Sun Microelectronics
else if (this->ChipID.Vendor == "IBM") this->ChipManufacturer = IBM; // IBM Microelectronics
else if (this->ChipID.Vendor == "Hewlett-Packard") this->ChipManufacturer = HP; // Hewlett-Packard
else if (this->ChipID.Vendor == "Motorola") this->ChipManufacturer = Motorola; // Motorola Microelectronics
else if (family.substr(0, 7) == "PA-RISC") this->ChipManufacturer = HP; // Hewlett-Packard
else this->ChipManufacturer = UnknownManufacturer; // Unknown manufacturer
}
/** */
bool SystemInformationImplementation::RetrieveCPUIdentity()
{
#if USE_CPUID
int localCPUVendor[4];
int localCPUSignature[4];
if (!call_cpuid(0, localCPUVendor))
{
return false;
}
if (!call_cpuid(1, localCPUSignature))
{
return false;
}
// Process the returned information.
// ; eax = 0 --> eax: maximum value of CPUID instruction.
// ; ebx: part 1 of 3; CPU signature.
// ; edx: part 2 of 3; CPU signature.
// ; ecx: part 3 of 3; CPU signature.
char vbuf[13];
memcpy (&(vbuf[0]), &(localCPUVendor[1]), sizeof (int));
memcpy (&(vbuf[4]), &(localCPUVendor[3]), sizeof (int));
memcpy (&(vbuf[8]), &(localCPUVendor[2]), sizeof (int));
vbuf[12] = '\0';
this->ChipID.Vendor = vbuf;
// Retrieve the family of CPU present.
// ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
// ; ebx: 31..24 - default APIC ID, 23..16 - logical processor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
// ; edx: CPU feature flags
this->ChipID.ExtendedFamily = ((localCPUSignature[0] & 0x0FF00000) >> 20); // Bits 27..20 Used
this->ChipID.ExtendedModel = ((localCPUSignature[0] & 0x000F0000) >> 16); // Bits 19..16 Used
this->ChipID.Type = ((localCPUSignature[0] & 0x0000F000) >> 12); // Bits 15..12 Used
this->ChipID.Family = ((localCPUSignature[0] & 0x00000F00) >> 8); // Bits 11..8 Used
this->ChipID.Model = ((localCPUSignature[0] & 0x000000F0) >> 4); // Bits 7..4 Used
this->ChipID.Revision = ((localCPUSignature[0] & 0x0000000F) >> 0); // Bits 3..0 Used
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUCacheDetails()
{
#if USE_CPUID
int L1Cache[4] = { 0, 0, 0, 0 };
int L2Cache[4] = { 0, 0, 0, 0 };
// Check to see if what we are about to do is supported...
if (RetrieveCPUExtendedLevelSupport (0x80000005))
{
if (!call_cpuid(0x80000005, L1Cache))
{
return false;
}
// Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as data cache size from edx: bits 31..24.
this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24);
this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24);
}
else
{
// Store -1 to indicate the cache could not be queried.
this->Features.L1CacheSize = -1;
}
// Check to see if what we are about to do is supported...
if (RetrieveCPUExtendedLevelSupport (0x80000006))
{
if (!call_cpuid(0x80000006, L2Cache))
{
return false;
}
// Save the L2 unified cache size (in KB) from ecx: bits 31..16.
this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16);
}
else
{
// Store -1 to indicate the cache could not be queried.
this->Features.L2CacheSize = -1;
}
// Define L3 as being not present as we cannot test for it.
this->Features.L3CacheSize = -1;
#endif
// Return failure if we cannot detect either cache with this method.
return ((this->Features.L1CacheSize == -1) && (this->Features.L2CacheSize == -1)) ? false : true;
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails()
{
#if USE_CPUID
int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1, L2Unified = -1, L3Unified = -1;
int TLBCacheData[4] = { 0, 0, 0, 0 };
int TLBPassCounter = 0;
int TLBCacheUnit = 0;
do {
if (!call_cpuid(2, TLBCacheData))
{
return false;
}
int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16);
(void)bob;
// Process the returned TLB and cache information.
for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter ++)
{
// First of all - decide which unit we are dealing with.
switch (nCounter)
{
// eax: bits 8..15 : bits 16..23 : bits 24..31
case 0: TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8); break;
case 1: TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16); break;
case 2: TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24); break;
// ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 3: TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0); break;
case 4: TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8); break;
case 5: TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16); break;
case 6: TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24); break;
// ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 7: TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0); break;
case 8: TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8); break;
case 9: TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16); break;
case 10: TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24); break;
// edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 11: TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0); break;
case 12: TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8); break;
case 13: TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16); break;
case 14: TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24); break;
// Default case - an error has occured.
default: return false;
}
// Now process the resulting unit to see what it means....
switch (TLBCacheUnit)
{
case 0x00: break;
case 0x01: STORE_TLBCACHE_INFO (TLBCode, 4); break;
case 0x02: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x03: STORE_TLBCACHE_INFO (TLBData, 4); break;
case 0x04: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x06: STORE_TLBCACHE_INFO (L1Code, 8); break;
case 0x08: STORE_TLBCACHE_INFO (L1Code, 16); break;
case 0x0a: STORE_TLBCACHE_INFO (L1Data, 8); break;
case 0x0c: STORE_TLBCACHE_INFO (L1Data, 16); break;
case 0x10: STORE_TLBCACHE_INFO (L1Data, 16); break; // <-- FIXME: IA-64 Only
case 0x15: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only
case 0x1a: STORE_TLBCACHE_INFO (L2Unified, 96); break; // <-- FIXME: IA-64 Only
case 0x22: STORE_TLBCACHE_INFO (L3Unified, 512); break;
case 0x23: STORE_TLBCACHE_INFO (L3Unified, 1024); break;
case 0x25: STORE_TLBCACHE_INFO (L3Unified, 2048); break;
case 0x29: STORE_TLBCACHE_INFO (L3Unified, 4096); break;
case 0x39: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x3c: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x40: STORE_TLBCACHE_INFO (L2Unified, 0); break; // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4 core).
case 0x41: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x42: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x43: STORE_TLBCACHE_INFO (L2Unified, 512); break;
case 0x44: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
case 0x45: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
case 0x50: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x51: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x52: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x5b: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x5c: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x5d: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x66: STORE_TLBCACHE_INFO (L1Data, 8); break;
case 0x67: STORE_TLBCACHE_INFO (L1Data, 16); break;
case 0x68: STORE_TLBCACHE_INFO (L1Data, 32); break;
case 0x70: STORE_TLBCACHE_INFO (L1Trace, 12); break;
case 0x71: STORE_TLBCACHE_INFO (L1Trace, 16); break;
case 0x72: STORE_TLBCACHE_INFO (L1Trace, 32); break;
case 0x77: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only
case 0x79: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x7a: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x7b: STORE_TLBCACHE_INFO (L2Unified, 512); break;
case 0x7c: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
case 0x7e: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x81: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x82: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x83: STORE_TLBCACHE_INFO (L2Unified, 512); break;
case 0x84: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
case 0x85: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
case 0x88: STORE_TLBCACHE_INFO (L3Unified, 2048); break; // <-- FIXME: IA-64 Only
case 0x89: STORE_TLBCACHE_INFO (L3Unified, 4096); break; // <-- FIXME: IA-64 Only
case 0x8a: STORE_TLBCACHE_INFO (L3Unified, 8192); break; // <-- FIXME: IA-64 Only
case 0x8d: STORE_TLBCACHE_INFO (L3Unified, 3096); break; // <-- FIXME: IA-64 Only
case 0x90: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only
case 0x96: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only
case 0x9b: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only
// Default case - an error has occured.
default: return false;
}
}
// Increment the TLB pass counter.
TLBPassCounter ++;
} while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter);
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1))
{
this->Features.L1CacheSize = -1;
}
else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1))
{
this->Features.L1CacheSize = L1Trace;
}
else if ((L1Code != -1) && (L1Data == -1))
{
this->Features.L1CacheSize = L1Code;
}
else if ((L1Code == -1) && (L1Data != -1))
{
this->Features.L1CacheSize = L1Data;
}
else if ((L1Code != -1) && (L1Data != -1))
{
this->Features.L1CacheSize = L1Code + L1Data;
}
else
{
this->Features.L1CacheSize = -1;
}
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if (L2Unified == -1)
{
this->Features.L2CacheSize = -1;
}
else
{
this->Features.L2CacheSize = L2Unified;
}
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if (L3Unified == -1)
{
this->Features.L3CacheSize = -1;
}
else
{
this->Features.L3CacheSize = L3Unified;
}
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUClockSpeed()
{
bool retrieved = false;
#if defined(_WIN32)
unsigned int uiRepetitions = 1;
unsigned int uiMSecPerRepetition = 50;
__int64 i64Total = 0;
__int64 i64Overhead = 0;
// Check if the TSC implementation works at all
if (this->Features.HasTSC &&
GetCyclesDifference(SystemInformationImplementation::Delay,
uiMSecPerRepetition) > 0)
{
for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter ++)
{
i64Total += GetCyclesDifference (SystemInformationImplementation::Delay,
uiMSecPerRepetition);
i64Overhead +=
GetCyclesDifference (SystemInformationImplementation::DelayOverhead,
uiMSecPerRepetition);
}
// Calculate the MHz speed.
i64Total -= i64Overhead;
i64Total /= uiRepetitions;
i64Total /= uiMSecPerRepetition;
i64Total /= 1000;
// Save the CPU speed.
this->CPUSpeedInMHz = (float) i64Total;
retrieved = true;
}
// If RDTSC is not supported, we fallback to trying to read this value
// from the registry:
if (!retrieved)
{
HKEY hKey = NULL;
LONG err = RegOpenKeyExW(HKEY_LOCAL_MACHINE,
L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
KEY_READ, &hKey);
if (ERROR_SUCCESS == err)
{
DWORD dwType = 0;
DWORD data = 0;
DWORD dwSize = sizeof(DWORD);
err = RegQueryValueExW(hKey, L"~MHz", 0,
&dwType, (LPBYTE) &data, &dwSize);
if (ERROR_SUCCESS == err)
{
this->CPUSpeedInMHz = (float) data;
retrieved = true;
}
RegCloseKey(hKey);
hKey = NULL;
}
}
#endif
return retrieved;
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed()
{
#if USE_ASM_INSTRUCTIONS
LARGE_INTEGER liStart, liEnd, liCountsPerSecond;
double dFrequency, dDifference;
// Attempt to get a starting tick count.
QueryPerformanceCounter (&liStart);
__try
{
_asm
{
mov eax, 0x80000000
mov ebx, CLASSICAL_CPU_FREQ_LOOP
Timer_Loop:
bsf ecx,eax
dec ebx
jnz Timer_Loop
}
}
__except(1)
{
return false;
}
// Attempt to get a starting tick count.
QueryPerformanceCounter (&liEnd);
// Get the difference... NB: This is in seconds....
QueryPerformanceFrequency (&liCountsPerSecond);
dDifference = (((double) liEnd.QuadPart - (double) liStart.QuadPart) / (double) liCountsPerSecond.QuadPart);
// Calculate the clock speed.
if (this->ChipID.Family == 3)
{
// 80386 processors.... Loop time is 115 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1000000);
}
else if (this->ChipID.Family == 4)
{
// 80486 processors.... Loop time is 47 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1000000);
}
else if (this->ChipID.Family == 5)
{
// Pentium processors.... Loop time is 43 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1000000);
}
// Save the clock speed.
this->Features.CPUSpeed = (int) dFrequency;
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(int CPULevelToCheck)
{
int cpuinfo[4] = { 0, 0, 0, 0 };
// The extended CPUID is supported by various vendors starting with the following CPU models:
//
// Manufacturer & Chip Name | Family Model Revision
//
// AMD K6, K6-2 | 5 6 x
// Cyrix GXm, Cyrix III "Joshua" | 5 4 x
// IDT C6-2 | 5 8 x
// VIA Cyrix III | 6 5 x
// Transmeta Crusoe | 5 x x
// Intel Pentium 4 | f x x
//
// We check to see if a supported processor is present...
if (this->ChipManufacturer == AMD)
{
if (this->ChipID.Family < 5) return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6)) return false;
}
else if (this->ChipManufacturer == Cyrix)
{
if (this->ChipID.Family < 5) return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4)) return false;
if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5)) return false;
}
else if (this->ChipManufacturer == IDT)
{
if (this->ChipID.Family < 5) return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8)) return false;
}
else if (this->ChipManufacturer == Transmeta)
{
if (this->ChipID.Family < 5) return false;
}
else if (this->ChipManufacturer == Intel)
{
if (this->ChipID.Family < 0xf)
{
return false;
}
}
#if USE_CPUID
if (!call_cpuid(0x80000000, cpuinfo))
{
return false;
}
#endif
// Now we have to check the level wanted vs level returned...
int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF);
int nLevelReturn = (cpuinfo[0] & 0x7FFFFFFF);
// Check to see if the level provided is supported...
if (nLevelWanted > nLevelReturn)
{
return false;
}
return true;
}
/** */
bool SystemInformationImplementation::RetrieveExtendedCPUFeatures()
{
// Check that we are not using an Intel processor as it does not support this.
if (this->ChipManufacturer == Intel)
{
return false;
}
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000001)))
{
return false;
}
#if USE_CPUID
int localCPUExtendedFeatures[4] = { 0, 0, 0, 0 };
if (!call_cpuid(0x80000001, localCPUExtendedFeatures))
{
return false;
}
// Retrieve the extended features of CPU present.
this->Features.ExtendedFeatures.Has3DNow = ((localCPUExtendedFeatures[3] & 0x80000000) != 0); // 3DNow Present --> Bit 31.
this->Features.ExtendedFeatures.Has3DNowPlus = ((localCPUExtendedFeatures[3] & 0x40000000) != 0); // 3DNow+ Present -- > Bit 30.
this->Features.ExtendedFeatures.HasSSEMMX = ((localCPUExtendedFeatures[3] & 0x00400000) != 0); // SSE MMX Present --> Bit 22.
this->Features.ExtendedFeatures.SupportsMP = ((localCPUExtendedFeatures[3] & 0x00080000) != 0); // MP Capable -- > Bit 19.
// Retrieve AMD specific extended features.
if (this->ChipManufacturer == AMD)
{
this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x00400000) != 0); // AMD specific: MMX-SSE --> Bit 22
}
// Retrieve Cyrix specific extended features.
if (this->ChipManufacturer == Cyrix)
{
this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x01000000) != 0); // Cyrix specific: Extended MMX --> Bit 24
}
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveProcessorSerialNumber()
{
// Check to see if the processor supports the processor serial number.
if (!this->Features.HasSerial)
{
return false;
}
#if USE_CPUID
int SerialNumber[4];
if (!call_cpuid(3, SerialNumber))
{
return false;
}
// Process the returned information.
// ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB: Transmeta only ?!?
// ; ecx: middle 32 bits are the processor signature bits
// ; edx: bottom 32 bits are the processor signature bits
char sn[128];
sprintf (sn, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x",
((SerialNumber[1] & 0xff000000) >> 24),
((SerialNumber[1] & 0x00ff0000) >> 16),
((SerialNumber[1] & 0x0000ff00) >> 8),
((SerialNumber[1] & 0x000000ff) >> 0),
((SerialNumber[2] & 0xff000000) >> 24),
((SerialNumber[2] & 0x00ff0000) >> 16),
((SerialNumber[2] & 0x0000ff00) >> 8),
((SerialNumber[2] & 0x000000ff) >> 0),
((SerialNumber[3] & 0xff000000) >> 24),
((SerialNumber[3] & 0x00ff0000) >> 16),
((SerialNumber[3] & 0x0000ff00) >> 8),
((SerialNumber[3] & 0x000000ff) >> 0));
this->ChipID.SerialNumber = sn;
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUPowerManagement()
{
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000007)))
{
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false;
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false;
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false;
return false;
}
#if USE_CPUID
int localCPUPowerManagement[4] = { 0, 0, 0, 0 };
if (!call_cpuid(0x80000007, localCPUPowerManagement))
{
return false;
}
// Check for the power management capabilities of the CPU.
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = ((localCPUPowerManagement[3] & 0x00000001) != 0);
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = ((localCPUPowerManagement[3] & 0x00000002) != 0);
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = ((localCPUPowerManagement[3] & 0x00000004) != 0);
return true;
#else
return false;
#endif
}
#if USE_CPUID
// Used only in USE_CPUID implementation below.
static void SystemInformationStripLeadingSpace(kwsys_stl::string& str)
{
// Because some manufacturers have leading white space - we have to post-process the name.
kwsys_stl::string::size_type pos = str.find_first_not_of(" ");
if(pos != kwsys_stl::string::npos)
{
str = str.substr(pos);
}
}
#endif
/** */
bool SystemInformationImplementation::RetrieveExtendedCPUIdentity()
{
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000002)))
return false;
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000003)))
return false;
if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000004)))
return false;
#if USE_CPUID
int CPUExtendedIdentity[12];
if (!call_cpuid(0x80000002, CPUExtendedIdentity))
{
return false;
}
if (!call_cpuid(0x80000003, CPUExtendedIdentity + 4))
{
return false;
}
if (!call_cpuid(0x80000004, CPUExtendedIdentity + 8))
{
return false;
}
// Process the returned information.
char nbuf[49];
memcpy (&(nbuf[0]), &(CPUExtendedIdentity[0]), sizeof (int));
memcpy (&(nbuf[4]), &(CPUExtendedIdentity[1]), sizeof (int));
memcpy (&(nbuf[8]), &(CPUExtendedIdentity[2]), sizeof (int));
memcpy (&(nbuf[12]), &(CPUExtendedIdentity[3]), sizeof (int));
memcpy (&(nbuf[16]), &(CPUExtendedIdentity[4]), sizeof (int));
memcpy (&(nbuf[20]), &(CPUExtendedIdentity[5]), sizeof (int));
memcpy (&(nbuf[24]), &(CPUExtendedIdentity[6]), sizeof (int));
memcpy (&(nbuf[28]), &(CPUExtendedIdentity[7]), sizeof (int));
memcpy (&(nbuf[32]), &(CPUExtendedIdentity[8]), sizeof (int));
memcpy (&(nbuf[36]), &(CPUExtendedIdentity[9]), sizeof (int));
memcpy (&(nbuf[40]), &(CPUExtendedIdentity[10]), sizeof (int));
memcpy (&(nbuf[44]), &(CPUExtendedIdentity[11]), sizeof (int));
nbuf[48] = '\0';
this->ChipID.ProcessorName = nbuf;
this->ChipID.ModelName = nbuf;
// Because some manufacturers have leading white space - we have to post-process the name.
SystemInformationStripLeadingSpace(this->ChipID.ProcessorName);
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUIdentity()
{
// Start by decided which manufacturer we are using....
switch (this->ChipManufacturer)
{
case Intel:
// Check the family / model / revision to determine the CPU ID.
switch (this->ChipID.Family) {
case 3:
this->ChipID.ProcessorName = "Newer i80386 family";
break;
case 4:
switch (this->ChipID.Model) {
case 0: this->ChipID.ProcessorName = "i80486DX-25/33"; break;
case 1: this->ChipID.ProcessorName = "i80486DX-50"; break;
case 2: this->ChipID.ProcessorName = "i80486SX"; break;
case 3: this->ChipID.ProcessorName = "i80486DX2"; break;
case 4: this->ChipID.ProcessorName = "i80486SL"; break;
case 5: this->ChipID.ProcessorName = "i80486SX2"; break;
case 7: this->ChipID.ProcessorName = "i80486DX2 WriteBack"; break;
case 8: this->ChipID.ProcessorName = "i80486DX4"; break;
case 9: this->ChipID.ProcessorName = "i80486DX4 WriteBack"; break;
default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false;
}
break;
case 5:
switch (this->ChipID.Model)
{
case 0: this->ChipID.ProcessorName = "P5 A-Step"; break;
case 1: this->ChipID.ProcessorName = "P5"; break;
case 2: this->ChipID.ProcessorName = "P54C"; break;
case 3: this->ChipID.ProcessorName = "P24T OverDrive"; break;
case 4: this->ChipID.ProcessorName = "P55C"; break;
case 7: this->ChipID.ProcessorName = "P54C"; break;
case 8: this->ChipID.ProcessorName = "P55C (0.25micron)"; break;
default: this->ChipID.ProcessorName = "Unknown Pentium family"; return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 0: this->ChipID.ProcessorName = "P6 A-Step"; break;
case 1: this->ChipID.ProcessorName = "P6"; break;
case 3: this->ChipID.ProcessorName = "Pentium II (0.28 micron)"; break;
case 5: this->ChipID.ProcessorName = "Pentium II (0.25 micron)"; break;
case 6: this->ChipID.ProcessorName = "Pentium II With On-Die L2 Cache"; break;
case 7: this->ChipID.ProcessorName = "Pentium III (0.25 micron)"; break;
case 8: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 256 KB On-Die L2 Cache "; break;
case 0xa: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache "; break;
case 0xb: this->ChipID.ProcessorName = "Pentium III (0.13 micron) With 256 Or 512 KB On-Die L2 Cache "; break;
case 23: this->ChipID.ProcessorName = "Intel(R) Core(TM)2 Duo CPU T9500 @ 2.60GHz"; break;
default: this->ChipID.ProcessorName = "Unknown P6 family"; return false;
}
break;
case 7:
this->ChipID.ProcessorName = "Intel Merced (IA-64)";
break;
case 0xf:
// Check the extended family bits...
switch (this->ChipID.ExtendedFamily)
{
case 0:
switch (this->ChipID.Model)
{
case 0: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break;
case 1: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break;
case 2: this->ChipID.ProcessorName = "Pentium IV (0.13 micron)"; break;
default: this->ChipID.ProcessorName = "Unknown Pentium 4 family"; return false;
}
break;
case 1:
this->ChipID.ProcessorName = "Intel McKinley (IA-64)";
break;
default:
this->ChipID.ProcessorName = "Pentium";
}
break;
default:
this->ChipID.ProcessorName = "Unknown Intel family";
return false;
}
break;
case AMD:
// Check the family / model / revision to determine the CPU ID.
switch (this->ChipID.Family)
{
case 4:
switch (this->ChipID.Model)
{
case 3: this->ChipID.ProcessorName = "80486DX2"; break;
case 7: this->ChipID.ProcessorName = "80486DX2 WriteBack"; break;
case 8: this->ChipID.ProcessorName = "80486DX4"; break;
case 9: this->ChipID.ProcessorName = "80486DX4 WriteBack"; break;
case 0xe: this->ChipID.ProcessorName = "5x86"; break;
case 0xf: this->ChipID.ProcessorName = "5x86WB"; break;
default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false;
}
break;
case 5:
switch (this->ChipID.Model)
{
case 0: this->ChipID.ProcessorName = "SSA5 (PR75, PR90 = PR100)"; break;
case 1: this->ChipID.ProcessorName = "5k86 (PR120 = PR133)"; break;
case 2: this->ChipID.ProcessorName = "5k86 (PR166)"; break;
case 3: this->ChipID.ProcessorName = "5k86 (PR200)"; break;
case 6: this->ChipID.ProcessorName = "K6 (0.30 micron)"; break;
case 7: this->ChipID.ProcessorName = "K6 (0.25 micron)"; break;
case 8: this->ChipID.ProcessorName = "K6-2"; break;
case 9: this->ChipID.ProcessorName = "K6-III"; break;
case 0xd: this->ChipID.ProcessorName = "K6-2+ or K6-III+ (0.18 micron)"; break;
default: this->ChipID.ProcessorName = "Unknown 80586 family"; return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 1: this->ChipID.ProcessorName = "Athlon- (0.25 micron)"; break;
case 2: this->ChipID.ProcessorName = "Athlon- (0.18 micron)"; break;
case 3: this->ChipID.ProcessorName = "Duron- (SF core)"; break;
case 4: this->ChipID.ProcessorName = "Athlon- (Thunderbird core)"; break;
case 6: this->ChipID.ProcessorName = "Athlon- (Palomino core)"; break;
case 7: this->ChipID.ProcessorName = "Duron- (Morgan core)"; break;
case 8:
if (this->Features.ExtendedFeatures.SupportsMP)
this->ChipID.ProcessorName = "Athlon - MP (Thoroughbred core)";
else this->ChipID.ProcessorName = "Athlon - XP (Thoroughbred core)";
break;
default: this->ChipID.ProcessorName = "Unknown K7 family"; return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown AMD family";
return false;
}
break;
case Transmeta:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 4: this->ChipID.ProcessorName = "Crusoe TM3x00 and TM5x00"; break;
default: this->ChipID.ProcessorName = "Unknown Crusoe family"; return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown Transmeta family";
return false;
}
break;
case Rise:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 0: this->ChipID.ProcessorName = "mP6 (0.25 micron)"; break;
case 2: this->ChipID.ProcessorName = "mP6 (0.18 micron)"; break;
default: this->ChipID.ProcessorName = "Unknown Rise family"; return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown Rise family";
return false;
}
break;
case UMC:
switch (this->ChipID.Family)
{
case 4:
switch (this->ChipID.Model)
{
case 1: this->ChipID.ProcessorName = "U5D"; break;
case 2: this->ChipID.ProcessorName = "U5S"; break;
default: this->ChipID.ProcessorName = "Unknown UMC family"; return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown UMC family";
return false;
}
break;
case IDT:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 4: this->ChipID.ProcessorName = "C6"; break;
case 8: this->ChipID.ProcessorName = "C2"; break;
case 9: this->ChipID.ProcessorName = "C3"; break;
default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 6: this->ChipID.ProcessorName = "VIA Cyrix III - Samuel"; break;
default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown IDT\\Centaur family";
return false;
}
break;
case Cyrix:
switch (this->ChipID.Family)
{
case 4:
switch (this->ChipID.Model)
{
case 4: this->ChipID.ProcessorName = "MediaGX GX = GXm"; break;
case 9: this->ChipID.ProcessorName = "5x86"; break;
default: this->ChipID.ProcessorName = "Unknown Cx5x86 family"; return false;
}
break;
case 5:
switch (this->ChipID.Model)
{
case 2: this->ChipID.ProcessorName = "Cx6x86"; break;
case 4: this->ChipID.ProcessorName = "MediaGX GXm"; break;
default: this->ChipID.ProcessorName = "Unknown Cx6x86 family"; return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 0: this->ChipID.ProcessorName = "6x86MX"; break;
case 5: this->ChipID.ProcessorName = "Cyrix M2 Core"; break;
case 6: this->ChipID.ProcessorName = "WinChip C5A Core"; break;
case 7: this->ChipID.ProcessorName = "WinChip C5B\\C5C Core"; break;
case 8: this->ChipID.ProcessorName = "WinChip C5C-T Core"; break;
default: this->ChipID.ProcessorName = "Unknown 6x86MX\\Cyrix III family"; return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown Cyrix family";
return false;
}
break;
case NexGen:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 0: this->ChipID.ProcessorName = "Nx586 or Nx586FPU"; break;
default: this->ChipID.ProcessorName = "Unknown NexGen family"; return false;
}
break;
default:
this->ChipID.ProcessorName = "Unknown NexGen family";
return false;
}
break;
case NSC:
this->ChipID.ProcessorName = "Cx486SLC \\ DLC \\ Cx486S A-Step";
break;
default:
this->ChipID.ProcessorName = "Unknown family"; // We cannot identify the processor.
return false;
}
return true;
}
/** Extract a value from the CPUInfo file */
kwsys_stl::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(kwsys_stl::string buffer,const char* word,size_t init)
{
size_t pos = buffer.find(word,init);
if(pos != buffer.npos)
{
this->CurrentPositionInFile = pos;
pos = buffer.find(":",pos);
size_t pos2 = buffer.find("\n",pos);
if(pos!=buffer.npos && pos2!=buffer.npos)
{
// It may happen that the beginning matches, but this is still not the requested key.
// An example is looking for "cpu" when "cpu family" comes first. So we check that
// we have only spaces from here to pos, otherwise we search again.
for(size_t i=this->CurrentPositionInFile+strlen(word); i < pos; ++i)
{
if(buffer[i] != ' ' && buffer[i] != '\t')
{
return this->ExtractValueFromCpuInfoFile(buffer, word, pos2);
}
}
return buffer.substr(pos+2,pos2-pos-2);
}
}
this->CurrentPositionInFile = buffer.npos;
return "";
}
/** Query for the cpu status */
bool SystemInformationImplementation::RetreiveInformationFromCpuInfoFile()
{
this->NumberOfLogicalCPU = 0;
this->NumberOfPhysicalCPU = 0;
kwsys_stl::string buffer;
FILE *fd = fopen("/proc/cpuinfo", "r" );
if ( !fd )
{
kwsys_ios::cout << "Problem opening /proc/cpuinfo" << kwsys_ios::endl;
return false;
}
size_t fileSize = 0;
while(!feof(fd))
{
buffer += static_cast<char>(fgetc(fd));
fileSize++;
}
fclose( fd );
buffer.resize(fileSize-2);
// Number of logical CPUs (combination of multiple processors, multi-core
// and hyperthreading)
size_t pos = buffer.find("processor\t");
while(pos != buffer.npos)
{
this->NumberOfLogicalCPU++;
pos = buffer.find("processor\t",pos+1);
}
#ifdef __linux
// Find the largest physical id.
int maxId = -1;
kwsys_stl::string idc =
this->ExtractValueFromCpuInfoFile(buffer,"physical id");
while(this->CurrentPositionInFile != buffer.npos)
{
int id = atoi(idc.c_str());
if(id > maxId)
{
maxId=id;
}
idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id",
this->CurrentPositionInFile+1);
}
// Physical ids returned by Linux don't distinguish cores.
// We want to record the total number of cores in this->NumberOfPhysicalCPU
// (checking only the first proc)
kwsys_stl::string cores =
this->ExtractValueFromCpuInfoFile(buffer,"cpu cores");
int numberOfCoresPerCPU=atoi(cores.c_str());
if (maxId > 0)
{
this->NumberOfPhysicalCPU=static_cast<unsigned int>(
numberOfCoresPerCPU*(maxId+1));
}
else
{
// Linux Sparc: get cpu count
this->NumberOfPhysicalCPU=
atoi(this->ExtractValueFromCpuInfoFile(buffer,"ncpus active").c_str());
}
#else // __CYGWIN__
// does not have "physical id" entries, neither "cpu cores"
// this has to be fixed for hyper-threading.
kwsys_stl::string cpucount =
this->ExtractValueFromCpuInfoFile(buffer,"cpu count");
this->NumberOfPhysicalCPU=
this->NumberOfLogicalCPU = atoi(cpucount.c_str());
#endif
// gotta have one, and if this is 0 then we get a / by 0n
// better to have a bad answer than a crash
if(this->NumberOfPhysicalCPU <= 0)
{
this->NumberOfPhysicalCPU = 1;
}
// LogicalProcessorsPerPhysical>1 => hyperthreading.
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical=
this->NumberOfLogicalCPU/this->NumberOfPhysicalCPU;
// CPU speed (checking only the first processor)
kwsys_stl::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"cpu MHz");
if(!CPUSpeed.empty())
{
this->CPUSpeedInMHz = static_cast<float>(atof(CPUSpeed.c_str()));
}
#ifdef __linux
else
{
// Linux Sparc: CPU speed is in Hz and encoded in hexadecimal
CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"Cpu0ClkTck");
this->CPUSpeedInMHz = static_cast<float>(
strtoull(CPUSpeed.c_str(),0,16))/1000000.0f;
}
#endif
// Chip family
kwsys_stl::string familyStr =
this->ExtractValueFromCpuInfoFile(buffer,"cpu family");
if(familyStr.empty())
{
familyStr = this->ExtractValueFromCpuInfoFile(buffer,"CPU architecture");
}
this->ChipID.Family = atoi(familyStr.c_str());
// Chip Vendor
this->ChipID.Vendor = this->ExtractValueFromCpuInfoFile(buffer,"vendor_id");
this->FindManufacturer(familyStr);
// second try for setting family
if (this->ChipID.Family == 0 && this->ChipManufacturer == HP)
{
if (familyStr == "PA-RISC 1.1a")
this->ChipID.Family = 0x11a;
else if (familyStr == "PA-RISC 2.0")
this->ChipID.Family = 0x200;
// If you really get CMake to work on a machine not belonging to
// any of those families I owe you a dinner if you get it to
// contribute nightly builds regularly.
}
// Chip Model
this->ChipID.Model = atoi(this->ExtractValueFromCpuInfoFile(buffer,"model").c_str());
if(!this->RetrieveClassicalCPUIdentity())
{
// Some platforms (e.g. PA-RISC) tell us their CPU name here.
// Note: x86 does not.
kwsys_stl::string cpuname = this->ExtractValueFromCpuInfoFile(buffer,"cpu");
if(!cpuname.empty())
{
this->ChipID.ProcessorName = cpuname;
}
}
// Chip revision
kwsys_stl::string cpurev = this->ExtractValueFromCpuInfoFile(buffer,"stepping");
if(cpurev.empty())
{
cpurev = this->ExtractValueFromCpuInfoFile(buffer,"CPU revision");
}
this->ChipID.Revision = atoi(cpurev.c_str());
// Chip Model Name
this->ChipID.ModelName = this->ExtractValueFromCpuInfoFile(buffer,"model name").c_str();
// L1 Cache size
// Different architectures may show different names for the caches.
// Sum up everything we find.
kwsys_stl::vector<const char*> cachename;
cachename.clear();
cachename.push_back("cache size"); // e.g. x86
cachename.push_back("I-cache"); // e.g. PA-RISC
cachename.push_back("D-cache"); // e.g. PA-RISC
this->Features.L1CacheSize = 0;
for (size_t index = 0; index < cachename.size(); index ++)
{
kwsys_stl::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer,cachename[index]);
if (!cacheSize.empty())
{
pos = cacheSize.find(" KB");
if(pos!=cacheSize.npos)
{
cacheSize = cacheSize.substr(0,pos);
}
this->Features.L1CacheSize += atoi(cacheSize.c_str());
}
}
// processor feature flags (probably x86 specific)
kwsys_stl::string cpuflags = this->ExtractValueFromCpuInfoFile(buffer,"flags");
if(!cpurev.empty())
{
// now we can match every flags as space + flag + space
cpuflags = " " + cpuflags + " ";
if ((cpuflags.find(" fpu ")!=kwsys_stl::string::npos))
{
this->Features.HasFPU = true;
}
if ((cpuflags.find(" tsc ")!=kwsys_stl::string::npos))
{
this->Features.HasTSC = true;
}
if ((cpuflags.find(" mmx ")!=kwsys_stl::string::npos))
{
this->Features.HasMMX = true;
}
if ((cpuflags.find(" sse ")!=kwsys_stl::string::npos))
{
this->Features.HasSSE = true;
}
if ((cpuflags.find(" sse2 ")!=kwsys_stl::string::npos))
{
this->Features.HasSSE2 = true;
}
if ((cpuflags.find(" apic ")!=kwsys_stl::string::npos))
{
this->Features.HasAPIC = true;
}
if ((cpuflags.find(" cmov ")!=kwsys_stl::string::npos))
{
this->Features.HasCMOV = true;
}
if ((cpuflags.find(" mtrr ")!=kwsys_stl::string::npos))
{
this->Features.HasMTRR = true;
}
if ((cpuflags.find(" acpi ")!=kwsys_stl::string::npos))
{
this->Features.HasACPI = true;
}
if ((cpuflags.find(" 3dnow ")!=kwsys_stl::string::npos))
{
this->Features.ExtendedFeatures.Has3DNow = true;
}
}
return true;
}
bool SystemInformationImplementation::QueryProcessorBySysconf()
{
#if defined(_SC_NPROC_ONLN) && !defined(_SC_NPROCESSORS_ONLN)
// IRIX names this slightly different
# define _SC_NPROCESSORS_ONLN _SC_NPROC_ONLN
#endif
#ifdef _SC_NPROCESSORS_ONLN
long c = sysconf(_SC_NPROCESSORS_ONLN);
if (c <= 0)
{
return false;
}
this->NumberOfPhysicalCPU = static_cast<unsigned int>(c);
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryProcessor()
{
return this->QueryProcessorBySysconf();
}
/**
Get total system RAM in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryTotal()
{
#if defined(_WIN32)
# if defined(_MSC_VER) && _MSC_VER < 1300
MEMORYSTATUS stat;
stat.dwLength = sizeof(stat);
GlobalMemoryStatus(&stat);
return stat.dwTotalPhys/1024;
# else
MEMORYSTATUSEX statex;
statex.dwLength=sizeof(statex);
GlobalMemoryStatusEx(&statex);
return statex.ullTotalPhys/1024;
# endif
#elif defined(__linux)
SystemInformation::LongLong memTotal=0;
int ierr=GetFieldFromFile("/proc/meminfo","MemTotal:",memTotal);
if (ierr)
{
return -1;
}
return memTotal;
#elif defined(__APPLE__)
uint64_t mem;
size_t len = sizeof(mem);
int ierr=sysctlbyname("hw.memsize", &mem, &len, NULL, 0);
if (ierr)
{
return -1;
}
return mem/1024;
#else
return 0;
#endif
}
/**
Get total system RAM in units of KiB. This may differ from the
host total if a host-wide resource limit is applied.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryAvailable(const char *hostLimitEnvVarName)
{
SystemInformation::LongLong memTotal=this->GetHostMemoryTotal();
// the following mechanism is provided for systems that
// apply resource limits across groups of processes.
// this is of use on certain SMP systems (eg. SGI UV)
// where the host has a large amount of ram but a given user's
// access to it is severly restricted. The system will
// apply a limit across a set of processes. Units are in KiB.
if (hostLimitEnvVarName)
{
const char *hostLimitEnvVarValue=getenv(hostLimitEnvVarName);
if (hostLimitEnvVarValue)
{
SystemInformation::LongLong hostLimit=atoLongLong(hostLimitEnvVarValue);
if (hostLimit>0)
{
memTotal=min(hostLimit,memTotal);
}
}
}
return memTotal;
}
/**
Get total system RAM in units of KiB. This may differ from the
host total if a per-process resource limit is applied.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcMemoryAvailable(
const char *hostLimitEnvVarName,
const char *procLimitEnvVarName)
{
SystemInformation::LongLong memAvail
= this->GetHostMemoryAvailable(hostLimitEnvVarName);
// the following mechanism is provide for systems where rlimits
// are not employed. Units are in KiB.
if (procLimitEnvVarName)
{
const char *procLimitEnvVarValue=getenv(procLimitEnvVarName);
if (procLimitEnvVarValue)
{
SystemInformation::LongLong procLimit=atoLongLong(procLimitEnvVarValue);
if (procLimit>0)
{
memAvail=min(procLimit,memAvail);
}
}
}
#if defined(__linux)
int ierr;
ResourceLimitType rlim;
ierr=GetResourceLimit(RLIMIT_DATA,&rlim);
if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
{
memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
}
ierr=GetResourceLimit(RLIMIT_AS,&rlim);
if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
{
memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
}
#elif defined(__APPLE__)
struct rlimit rlim;
int ierr;
ierr=getrlimit(RLIMIT_DATA,&rlim);
if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
{
memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
}
ierr=getrlimit(RLIMIT_RSS,&rlim);
if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
{
memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
}
#endif
return memAvail;
}
/**
Get RAM used by all processes in the host, in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryUsed()
{
#if defined(_WIN32)
# if defined(_MSC_VER) && _MSC_VER < 1300
MEMORYSTATUS stat;
stat.dwLength = sizeof(stat);
GlobalMemoryStatus(&stat);
return (stat.dwTotalPhys - stat.dwAvailPhys)/1024;
# else
MEMORYSTATUSEX statex;
statex.dwLength=sizeof(statex);
GlobalMemoryStatusEx(&statex);
return (statex.ullTotalPhys - statex.ullAvailPhys)/1024;
# endif
#elif defined(__linux)
const char *names[3]={"MemTotal:","MemFree:",NULL};
SystemInformation::LongLong values[2]={SystemInformation::LongLong(0)};
int ierr=GetFieldsFromFile("/proc/meminfo",names,values);
if (ierr)
{
return ierr;
}
SystemInformation::LongLong &memTotal=values[0];
SystemInformation::LongLong &memFree=values[1];
return memTotal - memFree;
#elif defined(__APPLE__)
SystemInformation::LongLong psz=getpagesize();
if (psz<1)
{
return -1;
}
const char *names[4]={"Pages active:","Pages inactive:","Pages wired down:",NULL};
SystemInformation::LongLong values[3]={SystemInformation::LongLong(0)};
int ierr=GetFieldsFromCommand("vm_stat", names, values);
if (ierr)
{
return -1;
}
SystemInformation::LongLong &vmActive=values[0];
SystemInformation::LongLong &vmInactive=values[1];
SystemInformation::LongLong &vmWired=values[2];
return ((vmActive+vmInactive+vmWired)*psz)/1024;
#else
return 0;
#endif
}
/**
Get system RAM used by the process associated with the given
process id in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcMemoryUsed()
{
#if defined(_WIN32) && defined(KWSYS_SYS_HAS_PSAPI)
long pid=GetCurrentProcessId();
HANDLE hProc;
hProc=OpenProcess(
PROCESS_QUERY_INFORMATION|PROCESS_VM_READ,
false,
pid);
if (hProc==0)
{
return -1;
}
PROCESS_MEMORY_COUNTERS pmc;
int ok=GetProcessMemoryInfo(hProc,&pmc,sizeof(pmc));
CloseHandle(hProc);
if (!ok)
{
return -2;
}
return pmc.WorkingSetSize/1024;
#elif defined(__linux)
SystemInformation::LongLong memUsed=0;
int ierr=GetFieldFromFile("/proc/self/status","VmRSS:",memUsed);
if (ierr)
{
return -1;
}
return memUsed;
#elif defined(__APPLE__)
SystemInformation::LongLong memUsed=0;
pid_t pid=getpid();
kwsys_ios::ostringstream oss;
oss << "ps -o rss= -p " << pid;
FILE *file=popen(oss.str().c_str(),"r");
if (file==0)
{
return -1;
}
oss.str("");
while (!feof(file) && !ferror(file))
{
char buf[256]={'\0'};
errno=0;
size_t nRead=fread(buf,1,256,file);
if (ferror(file) && (errno==EINTR))
{
clearerr(file);
}
if (nRead) oss << buf;
}
int ierr=ferror(file);
pclose(file);
if (ierr)
{
return -2;
}
kwsys_ios::istringstream iss(oss.str());
iss >> memUsed;
return memUsed;
#else
return 0;
#endif
}
/**
Get the process id of the running process.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcessId()
{
#if defined(_WIN32)
return GetCurrentProcessId();
#elif defined(__linux) || defined(__APPLE__)
return getpid();
#else
return -1;
#endif
}
/**
return current program stack in a string
demangle cxx symbols if possible.
*/
kwsys_stl::string SystemInformationImplementation::GetProgramStack(
int firstFrame,
int wholePath)
{
kwsys_stl::string programStack = ""
#if !defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
"WARNING: The stack could not be examined "
"because backtrace is not supported.\n"
#elif !defined(KWSYS_SYSTEMINFORMATION_HAS_DEBUG_BUILD)
"WARNING: The stack trace will not use advanced "
"capabilities because this is a release build.\n"
#else
# if !defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
"WARNING: Function names will not be demangled because "
"dladdr is not available.\n"
# endif
# if !defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
"WARNING: Function names will not be demangled "
"because cxxabi is not available.\n"
# endif
#endif
;
kwsys_ios::ostringstream oss;
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
void *stackSymbols[256];
int nFrames=backtrace(stackSymbols,256);
for (int i=firstFrame; i<nFrames; ++i)
{
SymbolProperties symProps;
symProps.SetReportPath(wholePath);
symProps.Initialize(stackSymbols[i]);
oss << symProps << kwsys_ios::endl;
}
#else
(void)firstFrame;
(void)wholePath;
#endif
programStack += oss.str();
return programStack;
}
/**
when set print stack trace in response to common signals.
*/
void SystemInformationImplementation::SetStackTraceOnError(int enable)
{
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
static int saOrigValid=0;
static struct sigaction saABRTOrig;
static struct sigaction saSEGVOrig;
static struct sigaction saTERMOrig;
static struct sigaction saINTOrig;
static struct sigaction saILLOrig;
static struct sigaction saBUSOrig;
static struct sigaction saFPEOrig;
if (enable && !saOrigValid)
{
// save the current actions
sigaction(SIGABRT,0,&saABRTOrig);
sigaction(SIGSEGV,0,&saSEGVOrig);
sigaction(SIGTERM,0,&saTERMOrig);
sigaction(SIGINT,0,&saINTOrig);
sigaction(SIGILL,0,&saILLOrig);
sigaction(SIGBUS,0,&saBUSOrig);
sigaction(SIGFPE,0,&saFPEOrig);
// enable read, disable write
saOrigValid=1;
// install ours
struct sigaction sa;
sa.sa_sigaction=(SigAction)StacktraceSignalHandler;
sa.sa_flags=SA_SIGINFO|SA_RESETHAND;
# ifdef SA_RESTART
sa.sa_flags|=SA_RESTART;
# endif
sigemptyset(&sa.sa_mask);
sigaction(SIGABRT,&sa,0);
sigaction(SIGSEGV,&sa,0);
sigaction(SIGTERM,&sa,0);
sigaction(SIGINT,&sa,0);
sigaction(SIGILL,&sa,0);
sigaction(SIGBUS,&sa,0);
sigaction(SIGFPE,&sa,0);
}
else
if (!enable && saOrigValid)
{
// restore previous actions
sigaction(SIGABRT,&saABRTOrig,0);
sigaction(SIGSEGV,&saSEGVOrig,0);
sigaction(SIGTERM,&saTERMOrig,0);
sigaction(SIGINT,&saINTOrig,0);
sigaction(SIGILL,&saILLOrig,0);
sigaction(SIGBUS,&saBUSOrig,0);
sigaction(SIGFPE,&saFPEOrig,0);
// enable write, disable read
saOrigValid=0;
}
#else
// avoid warning C4100
(void)enable;
#endif
}
bool SystemInformationImplementation::QueryWindowsMemory()
{
#if defined(_WIN32)
# if defined(_MSC_VER) && _MSC_VER < 1300
MEMORYSTATUS ms;
unsigned long tv, tp, av, ap;
ms.dwLength = sizeof(ms);
GlobalMemoryStatus(&ms);
# define MEM_VAL(value) dw##value
# else
MEMORYSTATUSEX ms;
DWORDLONG tv, tp, av, ap;
ms.dwLength = sizeof(ms);
if (0 == GlobalMemoryStatusEx(&ms))
{
return 0;
}
# define MEM_VAL(value) ull##value
# endif
tv = ms.MEM_VAL(TotalVirtual);
tp = ms.MEM_VAL(TotalPhys);
av = ms.MEM_VAL(AvailVirtual);
ap = ms.MEM_VAL(AvailPhys);
this->TotalVirtualMemory = tv>>10>>10;
this->TotalPhysicalMemory = tp>>10>>10;
this->AvailableVirtualMemory = av>>10>>10;
this->AvailablePhysicalMemory = ap>>10>>10;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryLinuxMemory()
{
#if defined(__linux)
unsigned long tv=0;
unsigned long tp=0;
unsigned long av=0;
unsigned long ap=0;
char buffer[1024]; // for reading lines
int linuxMajor = 0;
int linuxMinor = 0;
// Find the Linux kernel version first
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if( errorFlag!=0 )
{
kwsys_ios::cout << "Problem calling uname(): " << strerror(errno) << kwsys_ios::endl;
return false;
}
if( strlen(unameInfo.release)>=3 )
{
// release looks like "2.6.3-15mdk-i686-up-4GB"
char majorChar=unameInfo.release[0];
char minorChar=unameInfo.release[2];
if( isdigit(majorChar) )
{
linuxMajor=majorChar-'0';
}
if( isdigit(minorChar) )
{
linuxMinor=minorChar-'0';
}
}
FILE *fd = fopen("/proc/meminfo", "r" );
if ( !fd )
{
kwsys_ios::cout << "Problem opening /proc/meminfo" << kwsys_ios::endl;
return false;
}
if( linuxMajor>=3 || ( (linuxMajor>=2) && (linuxMinor>=6) ) )
{
// new /proc/meminfo format since kernel 2.6.x
// Rigorously, this test should check from the developping version 2.5.x
// that introduced the new format...
enum { mMemTotal, mMemFree, mBuffers, mCached, mSwapTotal, mSwapFree };
const char* format[6] =
{ "MemTotal:%lu kB", "MemFree:%lu kB", "Buffers:%lu kB",
"Cached:%lu kB", "SwapTotal:%lu kB", "SwapFree:%lu kB" };
bool have[6] = { false, false, false, false, false, false };
unsigned long value[6];
int count = 0;
while(fgets(buffer, static_cast<int>(sizeof(buffer)), fd))
{
for(int i=0; i < 6; ++i)
{
if(!have[i] && sscanf(buffer, format[i], &value[i]) == 1)
{
have[i] = true;
++count;
}
}
}
if(count == 6)
{
this->TotalPhysicalMemory = value[mMemTotal] / 1024;
this->AvailablePhysicalMemory =
(value[mMemFree] + value[mBuffers] + value[mCached]) / 1024;
this->TotalVirtualMemory = value[mSwapTotal] / 1024;
this->AvailableVirtualMemory = value[mSwapFree] / 1024;
}
else
{
kwsys_ios::cout << "Problem parsing /proc/meminfo" << kwsys_ios::endl;
fclose(fd);
return false;
}
}
else
{
// /proc/meminfo format for kernel older than 2.6.x
unsigned long temp;
unsigned long cachedMem;
unsigned long buffersMem;
// Skip "total: used:..."
char *r=fgets(buffer, static_cast<int>(sizeof(buffer)), fd);
int status=0;
if(r==buffer)
{
status+=fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n",
&tp, &temp, &ap, &temp, &buffersMem, &cachedMem);
}
if(status==6)
{
status+=fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av);
}
if(status==9)
{
this->TotalVirtualMemory = tv>>10>>10;
this->TotalPhysicalMemory = tp>>10>>10;
this->AvailableVirtualMemory = av>>10>>10;
this->AvailablePhysicalMemory = (ap+buffersMem+cachedMem)>>10>>10;
}
else
{
kwsys_ios::cout << "Problem parsing /proc/meminfo" << kwsys_ios::endl;
fclose(fd);
return false;
}
}
fclose( fd );
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryCygwinMemory()
{
#ifdef __CYGWIN__
// _SC_PAGE_SIZE does return the mmap() granularity on Cygwin,
// see http://cygwin.com/ml/cygwin/2006-06/msg00350.html
// Therefore just use 4096 as the page size of Windows.
long m = sysconf(_SC_PHYS_PAGES);
if (m < 0)
{
return false;
}
this->TotalPhysicalMemory = m >> 8;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryAIXMemory()
{
#if defined(_AIX)
long c = sysconf(_SC_AIX_REALMEM);
if (c <= 0)
{
return false;
}
this->TotalPhysicalMemory = c / 1024;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryMemoryBySysconf()
{
#if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE)
// Assume the mmap() granularity as returned by _SC_PAGESIZE is also
// the system page size. The only known system where this isn't true
// is Cygwin.
long p = sysconf(_SC_PHYS_PAGES);
long m = sysconf(_SC_PAGESIZE);
if (p < 0 || m < 0)
{
return false;
}
// assume pagesize is a power of 2 and smaller 1 MiB
size_t pagediv = (1024 * 1024 / m);
this->TotalPhysicalMemory = p;
this->TotalPhysicalMemory /= pagediv;
#if defined(_SC_AVPHYS_PAGES)
p = sysconf(_SC_AVPHYS_PAGES);
if (p < 0)
{
return false;
}
this->AvailablePhysicalMemory = p;
this->AvailablePhysicalMemory /= pagediv;
#endif
return true;
#else
return false;
#endif
}
/** Query for the memory status */
bool SystemInformationImplementation::QueryMemory()
{
return this->QueryMemoryBySysconf();
}
/** */
size_t SystemInformationImplementation::GetTotalVirtualMemory()
{
return this->TotalVirtualMemory;
}
/** */
size_t SystemInformationImplementation::GetAvailableVirtualMemory()
{
return this->AvailableVirtualMemory;
}
size_t SystemInformationImplementation::GetTotalPhysicalMemory()
{
return this->TotalPhysicalMemory;
}
/** */
size_t SystemInformationImplementation::GetAvailablePhysicalMemory()
{
return this->AvailablePhysicalMemory;
}
/** Get Cycle differences */
SystemInformation::LongLong
SystemInformationImplementation::GetCyclesDifference (DELAY_FUNC DelayFunction,
unsigned int uiParameter)
{
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
unsigned __int64 stamp1, stamp2;
stamp1 = __rdtsc();
DelayFunction(uiParameter);
stamp2 = __rdtsc();
return stamp2 - stamp1;
#elif USE_ASM_INSTRUCTIONS
unsigned int edx1, eax1;
unsigned int edx2, eax2;
// Calculate the frequency of the CPU instructions.
__try {
_asm {
push uiParameter ; push parameter param
mov ebx, DelayFunction ; store func in ebx
RDTSC_INSTRUCTION
mov esi, eax ; esi = eax
mov edi, edx ; edi = edx
call ebx ; call the delay functions
RDTSC_INSTRUCTION
pop ebx
mov edx2, edx ; edx2 = edx
mov eax2, eax ; eax2 = eax
mov edx1, edi ; edx2 = edi
mov eax1, esi ; eax2 = esi
}
}
__except(1)
{
return -1;
}
return ((((__int64) edx2 << 32) + eax2) - (((__int64) edx1 << 32) + eax1));
#else
(void)DelayFunction;
(void)uiParameter;
return -1;
#endif
}
/** Compute the delay overhead */
void SystemInformationImplementation::DelayOverhead(unsigned int uiMS)
{
#if defined(_WIN32)
LARGE_INTEGER Frequency, StartCounter, EndCounter;
__int64 x;
// Get the frequency of the high performance counter.
if(!QueryPerformanceFrequency (&Frequency))
{
return;
}
x = Frequency.QuadPart / 1000 * uiMS;
// Get the starting position of the counter.
QueryPerformanceCounter (&StartCounter);
do {
// Get the ending position of the counter.
QueryPerformanceCounter (&EndCounter);
} while (EndCounter.QuadPart - StartCounter.QuadPart == x);
#endif
(void)uiMS;
}
/** Return the number of logical CPU per physical CPUs Works only for windows */
unsigned char SystemInformationImplementation::LogicalCPUPerPhysicalCPU(void)
{
#ifdef __APPLE__
size_t len = 4;
int cores_per_package = 0;
int err = sysctlbyname("machdep.cpu.cores_per_package", &cores_per_package, &len, NULL, 0);
if (err != 0)
{
return 1; // That name was not found, default to 1
}
return static_cast<unsigned char>(cores_per_package);
#else
int Regs[4] = { 0, 0, 0, 0 };
#if USE_CPUID
if (!this->IsHyperThreadingSupported())
{
return static_cast<unsigned char>(1); // HT not supported
}
call_cpuid(1, Regs);
#endif
return static_cast<unsigned char> ((Regs[1] & NUM_LOGICAL_BITS) >> 16);
#endif
}
/** Works only for windows */
bool SystemInformationImplementation::IsHyperThreadingSupported()
{
if (this->Features.ExtendedFeatures.SupportsHyperthreading)
{
return true;
}
#if USE_CPUID
int Regs[4] = { 0, 0, 0, 0 },
VendorId[4] = { 0, 0, 0, 0 };
// Get vendor id string
if (!call_cpuid(0, VendorId))
{
return false;
}
// eax contains family processor type
// edx has info about the availability of hyper-Threading
if (!call_cpuid(1, Regs))
{
return false;
}
if (((Regs[0] & FAMILY_ID) == PENTIUM4_ID) || (Regs[0] & EXT_FAMILY_ID))
{
if (VendorId[1] == 0x756e6547) // 'uneG'
{
if (VendorId[3] == 0x49656e69) // 'Ieni'
{
if (VendorId[2] == 0x6c65746e) // 'letn'
{
// Genuine Intel with hyper-Threading technology
this->Features.ExtendedFeatures.SupportsHyperthreading = ((Regs[3] & HT_BIT) != 0);
return this->Features.ExtendedFeatures.SupportsHyperthreading;
}
}
}
}
#endif
return 0; // Not genuine Intel processor
}
/** Return the APIC Id. Works only for windows. */
unsigned char SystemInformationImplementation::GetAPICId()
{
int Regs[4] = { 0, 0, 0, 0 };
#if USE_CPUID
if (!this->IsHyperThreadingSupported())
{
return static_cast<unsigned char>(-1); // HT not supported
} // Logical processor = 1
call_cpuid(1, Regs);
#endif
return static_cast<unsigned char>((Regs[1] & INITIAL_APIC_ID_BITS) >> 24);
}
/** Count the number of CPUs. Works only on windows. */
int SystemInformationImplementation::CPUCount()
{
#if defined(_WIN32)
unsigned char StatusFlag = 0;
SYSTEM_INFO info;
this->NumberOfPhysicalCPU = 0;
this->NumberOfLogicalCPU = 0;
info.dwNumberOfProcessors = 0;
GetSystemInfo (&info);
// Number of physical processors in a non-Intel system
// or in a 32-bit Intel system with Hyper-Threading technology disabled
this->NumberOfPhysicalCPU = (unsigned char) info.dwNumberOfProcessors;
if (this->IsHyperThreadingSupported())
{
unsigned char HT_Enabled = 0;
this->NumberOfLogicalCPU = this->LogicalCPUPerPhysicalCPU();
if (this->NumberOfLogicalCPU >= 1) // >1 Doesn't mean HT is enabled in the BIOS
{
HANDLE hCurrentProcessHandle;
#ifndef _WIN64
# define DWORD_PTR DWORD
#endif
DWORD_PTR dwProcessAffinity;
DWORD_PTR dwSystemAffinity;
DWORD dwAffinityMask;
// Calculate the appropriate shifts and mask based on the
// number of logical processors.
unsigned int i = 1;
unsigned char PHY_ID_MASK = 0xFF;
//unsigned char PHY_ID_SHIFT = 0;
while (i < this->NumberOfLogicalCPU)
{
i *= 2;
PHY_ID_MASK <<= 1;
// PHY_ID_SHIFT++;
}
hCurrentProcessHandle = GetCurrentProcess();
GetProcessAffinityMask(hCurrentProcessHandle, &dwProcessAffinity,
&dwSystemAffinity);
// Check if available process affinity mask is equal to the
// available system affinity mask
if (dwProcessAffinity != dwSystemAffinity)
{
StatusFlag = HT_CANNOT_DETECT;
this->NumberOfPhysicalCPU = (unsigned char)-1;
return StatusFlag;
}
dwAffinityMask = 1;
while (dwAffinityMask != 0 && dwAffinityMask <= dwProcessAffinity)
{
// Check if this CPU is available
if (dwAffinityMask & dwProcessAffinity)
{
if (SetProcessAffinityMask(hCurrentProcessHandle,
dwAffinityMask))
{
unsigned char APIC_ID, LOG_ID;
Sleep(0); // Give OS time to switch CPU
APIC_ID = GetAPICId();
LOG_ID = APIC_ID & ~PHY_ID_MASK;
if (LOG_ID != 0)
{
HT_Enabled = 1;
}
}
}
dwAffinityMask = dwAffinityMask << 1;
}
// Reset the processor affinity
SetProcessAffinityMask(hCurrentProcessHandle, dwProcessAffinity);
if (this->NumberOfLogicalCPU == 1) // Normal P4 : HT is disabled in hardware
{
StatusFlag = HT_DISABLED;
}
else
{
if (HT_Enabled)
{
// Total physical processors in a Hyper-Threading enabled system.
this->NumberOfPhysicalCPU /= (this->NumberOfLogicalCPU);
StatusFlag = HT_ENABLED;
}
else
{
StatusFlag = HT_SUPPORTED_NOT_ENABLED;
}
}
}
}
else
{
// Processors do not have Hyper-Threading technology
StatusFlag = HT_NOT_CAPABLE;
this->NumberOfLogicalCPU = 1;
}
return StatusFlag;
#else
return 0;
#endif
}
/** Return the number of logical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU()
{
return this->NumberOfLogicalCPU;
}
/** Return the number of physical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU()
{
return this->NumberOfPhysicalCPU;
}
/** For Mac use sysctlbyname calls to find system info */
bool SystemInformationImplementation::ParseSysCtl()
{
#if defined(__APPLE__)
char retBuf[128];
int err = 0;
uint64_t value = 0;
size_t len = sizeof(value);
sysctlbyname("hw.memsize", &value, &len, NULL, 0);
this->TotalPhysicalMemory = static_cast< size_t >( value/1048576 );
// Parse values for Mac
this->AvailablePhysicalMemory = 0;
vm_statistics_data_t vmstat;
mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
if ( host_statistics(mach_host_self(), HOST_VM_INFO,
(host_info_t) &vmstat, &count) == KERN_SUCCESS )
{
len = sizeof(value);
err = sysctlbyname("hw.pagesize", &value, &len, NULL, 0);
int64_t available_memory = vmstat.free_count * value;
this->AvailablePhysicalMemory = static_cast< size_t >( available_memory / 1048576 );
}
#ifdef VM_SWAPUSAGE
// Virtual memory.
int mib[2] = { CTL_VM, VM_SWAPUSAGE };
size_t miblen = sizeof(mib) / sizeof(mib[0]);
struct xsw_usage swap;
len = sizeof(swap);
err = sysctl(mib, miblen, &swap, &len, NULL, 0);
if (err == 0)
{
this->AvailableVirtualMemory = static_cast< size_t >( swap.xsu_avail/1048576 );
this->TotalVirtualMemory = static_cast< size_t >( swap.xsu_total/1048576 );
}
#else
this->AvailableVirtualMemory = 0;
this->TotalVirtualMemory = 0;
#endif
// CPU Info
len = sizeof(this->NumberOfPhysicalCPU);
sysctlbyname("hw.physicalcpu", &this->NumberOfPhysicalCPU, &len, NULL, 0);
len = sizeof(this->NumberOfLogicalCPU);
sysctlbyname("hw.logicalcpu", &this->NumberOfLogicalCPU, &len, NULL, 0);
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical =
this->LogicalCPUPerPhysicalCPU();
len = sizeof(value);
sysctlbyname("hw.cpufrequency", &value, &len, NULL, 0);
this->CPUSpeedInMHz = static_cast< float >( value )/ 1000000;
// Chip family
len = sizeof(this->ChipID.Family);
//Seems only the intel chips will have this name so if this fails it is
//probably a PPC machine
err = sysctlbyname("machdep.cpu.family",
&this->ChipID.Family, &len, NULL, 0);
if (err != 0) // Go back to names we know but are less descriptive
{
this->ChipID.Family = 0;
::memset(retBuf, 0, 128);
len = 32;
err = sysctlbyname("hw.machine", &retBuf, &len, NULL, 0);
kwsys_stl::string machineBuf(retBuf);
if (machineBuf.find_first_of("Power") != kwsys_stl::string::npos)
{
this->ChipID.Vendor = "IBM";
len = sizeof(this->ChipID.Family);
err = sysctlbyname("hw.cputype", &this->ChipID.Family, &len, NULL, 0);
len = sizeof(this->ChipID.Model);
err = sysctlbyname("hw.cpusubtype", &this->ChipID.Model, &len, NULL, 0);
this->FindManufacturer();
}
}
else // Should be an Intel Chip.
{
len = sizeof(this->ChipID.Family);
err =
sysctlbyname("machdep.cpu.family", &this->ChipID.Family, &len, NULL, 0);
::memset(retBuf, 0, 128);
len = 128;
err = sysctlbyname("machdep.cpu.vendor", retBuf, &len, NULL, 0);
// Chip Vendor
this->ChipID.Vendor = retBuf;
this->FindManufacturer();
// Chip Model
len = sizeof(value);
err = sysctlbyname("machdep.cpu.model", &value, &len, NULL, 0);
this->ChipID.Model = static_cast< int >( value );
// Chip Stepping
len = sizeof(value);
value = 0;
err = sysctlbyname("machdep.cpu.stepping", &value, &len, NULL, 0);
if (!err)
{
this->ChipID.Revision = static_cast< int >( value );
}
// feature string
char *buf = 0;
size_t allocSize = 128;
err = 0;
len = 0;
// sysctlbyname() will return with err==0 && len==0 if the buffer is too small
while (err == 0 && len == 0)
{
delete[] buf;
allocSize *= 2;
buf = new char[allocSize];
if (!buf)
{
break;
}
buf[0] = ' ';
len = allocSize - 2; // keep space for leading and trailing space
err = sysctlbyname("machdep.cpu.features", buf + 1, &len, NULL, 0);
}
if (!err && buf && len)
{
// now we can match every flags as space + flag + space
buf[len + 1] = ' ';
kwsys_stl::string cpuflags(buf, len + 2);
if ((cpuflags.find(" FPU ")!=kwsys_stl::string::npos))
{
this->Features.HasFPU = true;
}
if ((cpuflags.find(" TSC ")!=kwsys_stl::string::npos))
{
this->Features.HasTSC = true;
}
if ((cpuflags.find(" MMX ")!=kwsys_stl::string::npos))
{
this->Features.HasMMX = true;
}
if ((cpuflags.find(" SSE ")!=kwsys_stl::string::npos))
{
this->Features.HasSSE = true;
}
if ((cpuflags.find(" SSE2 ")!=kwsys_stl::string::npos))
{
this->Features.HasSSE2 = true;
}
if ((cpuflags.find(" APIC ")!=kwsys_stl::string::npos))
{
this->Features.HasAPIC = true;
}
if ((cpuflags.find(" CMOV ")!=kwsys_stl::string::npos))
{
this->Features.HasCMOV = true;
}
if ((cpuflags.find(" MTRR ")!=kwsys_stl::string::npos))
{
this->Features.HasMTRR = true;
}
if ((cpuflags.find(" ACPI ")!=kwsys_stl::string::npos))
{
this->Features.HasACPI = true;
}
}
delete[] buf;
}
// brand string
::memset(retBuf, 0, sizeof(retBuf));
len = sizeof(retBuf);
err = sysctlbyname("machdep.cpu.brand_string", retBuf, &len, NULL, 0);
if (!err)
{
this->ChipID.ProcessorName = retBuf;
this->ChipID.ModelName = retBuf;
}
// Cache size
len = sizeof(value);
err = sysctlbyname("hw.l1icachesize", &value, &len, NULL, 0);
this->Features.L1CacheSize = static_cast< int >( value );
len = sizeof(value);
err = sysctlbyname("hw.l2cachesize", &value, &len, NULL, 0);
this->Features.L2CacheSize = static_cast< int >( value );
return true;
#else
return false;
#endif
}
/** Extract a value from sysctl command */
kwsys_stl::string SystemInformationImplementation::ExtractValueFromSysCtl(const char* word)
{
size_t pos = this->SysCtlBuffer.find(word);
if(pos != this->SysCtlBuffer.npos)
{
pos = this->SysCtlBuffer.find(": ",pos);
size_t pos2 = this->SysCtlBuffer.find("\n",pos);
if(pos!=this->SysCtlBuffer.npos && pos2!=this->SysCtlBuffer.npos)
{
return this->SysCtlBuffer.substr(pos+2,pos2-pos-2);
}
}
return "";
}
/** Run a given process */
kwsys_stl::string SystemInformationImplementation::RunProcess(kwsys_stl::vector<const char*> args)
{
kwsys_stl::string buffer = "";
// Run the application
kwsysProcess* gp = kwsysProcess_New();
kwsysProcess_SetCommand(gp, &*args.begin());
kwsysProcess_SetOption(gp,kwsysProcess_Option_HideWindow,1);
kwsysProcess_Execute(gp);
char* data = NULL;
int length;
double timeout = 255;
int pipe; // pipe id as returned by kwsysProcess_WaitForData()
while( ( pipe = kwsysProcess_WaitForData(gp,&data,&length,&timeout),
(pipe == kwsysProcess_Pipe_STDOUT || pipe == kwsysProcess_Pipe_STDERR) ) ) // wait for 1s
{
buffer.append(data, length);
}
kwsysProcess_WaitForExit(gp, 0);
int result = 0;
switch(kwsysProcess_GetState(gp))
{
case kwsysProcess_State_Exited:
{
result = kwsysProcess_GetExitValue(gp);
} break;
case kwsysProcess_State_Error:
{
kwsys_ios::cerr << "Error: Could not run " << args[0] << ":\n";
kwsys_ios::cerr << kwsysProcess_GetErrorString(gp) << "\n";
} break;
case kwsysProcess_State_Exception:
{
kwsys_ios::cerr << "Error: " << args[0]
<< " terminated with an exception: "
<< kwsysProcess_GetExceptionString(gp) << "\n";
} break;
case kwsysProcess_State_Starting:
case kwsysProcess_State_Executing:
case kwsysProcess_State_Expired:
case kwsysProcess_State_Killed:
{
// Should not get here.
kwsys_ios::cerr << "Unexpected ending state after running " << args[0]
<< kwsys_ios::endl;
} break;
}
kwsysProcess_Delete(gp);
if(result)
{
kwsys_ios::cerr << "Error " << args[0] << " returned :" << result << "\n";
}
return buffer;
}
kwsys_stl::string SystemInformationImplementation::ParseValueFromKStat(const char* arguments)
{
kwsys_stl::vector<const char*> args;
args.clear();
args.push_back("kstat");
args.push_back("-p");
kwsys_stl::string command = arguments;
size_t start = command.npos;
size_t pos = command.find(' ',0);
while(pos!=command.npos)
{
bool inQuotes = false;
// Check if we are between quotes
size_t b0 = command.find('"',0);
size_t b1 = command.find('"',b0+1);
while(b0 != command.npos && b1 != command.npos && b1>b0)
{
if(pos>b0 && pos<b1)
{
inQuotes = true;
break;
}
b0 = command.find('"',b1+1);
b1 = command.find('"',b0+1);
}
if(!inQuotes)
{
kwsys_stl::string arg = command.substr(start+1,pos-start-1);
// Remove the quotes if any
size_t quotes = arg.find('"');
while(quotes != arg.npos)
{
arg.erase(quotes,1);
quotes = arg.find('"');
}
args.push_back(arg.c_str());
start = pos;
}
pos = command.find(' ',pos+1);
}
kwsys_stl::string lastArg = command.substr(start+1,command.size()-start-1);
args.push_back(lastArg.c_str());
args.push_back(0);
kwsys_stl::string buffer = this->RunProcess(args);
kwsys_stl::string value = "";
for(size_t i=buffer.size()-1;i>0;i--)
{
if(buffer[i] == ' ' || buffer[i] == '\t')
{
break;
}
if(buffer[i] != '\n' && buffer[i] != '\r')
{
kwsys_stl::string val = value;
value = buffer[i];
value += val;
}
}
return value;
}
/** Querying for system information from Solaris */
bool SystemInformationImplementation::QuerySolarisMemory()
{
#if defined (__SVR4) && defined (__sun)
// Solaris allows querying this value by sysconf, but if this is
// a 32 bit process on a 64 bit host the returned memory will be
// limited to 4GiB. So if this is a 32 bit process or if the sysconf
// method fails use the kstat interface.
#if SIZEOF_VOID_P == 8
if (this->QueryMemoryBySysconf())
{
return true;
}
#endif
char* tail;
unsigned long totalMemory =
strtoul(this->ParseValueFromKStat("-s physmem").c_str(),&tail,0);
this->TotalPhysicalMemory = totalMemory/128;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QuerySolarisProcessor()
{
if (!this->QueryProcessorBySysconf())
{
return false;
}
// Parse values
this->CPUSpeedInMHz = static_cast<float>(atoi(this->ParseValueFromKStat("-s clock_MHz").c_str()));
// Chip family
this->ChipID.Family = 0;
// Chip Model
this->ChipID.ProcessorName = this->ParseValueFromKStat("-s cpu_type");
this->ChipID.Model = 0;
// Chip Vendor
if (this->ChipID.ProcessorName != "i386")
{
this->ChipID.Vendor = "Sun";
this->FindManufacturer();
}
return true;
}
/** Querying for system information from Haiku OS */
bool SystemInformationImplementation::QueryHaikuInfo()
{
#if defined(__HAIKU__)
// CPU count
system_info info;
get_system_info(&info);
this->NumberOfPhysicalCPU = info.cpu_count;
// CPU speed
uint32 topologyNodeCount = 0;
cpu_topology_node_info* topology = 0;
get_cpu_topology_info(0, &topologyNodeCount);
if (topologyNodeCount != 0)
topology = new cpu_topology_node_info[topologyNodeCount];
get_cpu_topology_info(topology, &topologyNodeCount);
for (uint32 i = 0; i < topologyNodeCount; i++) {
if (topology[i].type == B_TOPOLOGY_CORE) {
this->CPUSpeedInMHz = topology[i].data.core.default_frequency /
1000000.0f;
break;
}
}
delete[] topology;
// Physical Memory
this->TotalPhysicalMemory = (info.max_pages * B_PAGE_SIZE) / (1024 * 1024) ;
this->AvailablePhysicalMemory = this->TotalPhysicalMemory -
((info.used_pages * B_PAGE_SIZE) / (1024 * 1024));
// NOTE: get_system_info_etc is currently a private call so just set to 0
// until it becomes public
this->TotalVirtualMemory = 0;
this->AvailableVirtualMemory = 0;
// Retrieve cpuid_info union for cpu 0
cpuid_info cpu_info;
get_cpuid(&cpu_info, 0, 0);
// Chip Vendor
// Use a temporary buffer so that we can add NULL termination to the string
char vbuf[13];
strncpy(vbuf, cpu_info.eax_0.vendor_id, 12);
vbuf[12] = '\0';
this->ChipID.Vendor = vbuf;
this->FindManufacturer();
// Retrieve cpuid_info union for cpu 0 this time using a register value of 1
get_cpuid(&cpu_info, 1, 0);
this->NumberOfLogicalCPU = cpu_info.eax_1.logical_cpus;
// Chip type
this->ChipID.Type = cpu_info.eax_1.type;
// Chip family
this->ChipID.Family = cpu_info.eax_1.family;
// Chip Model
this->ChipID.Model = cpu_info.eax_1.model;
// Chip Revision
this->ChipID.Revision = cpu_info.eax_1.stepping;
// Chip Extended Family
this->ChipID.ExtendedFamily = cpu_info.eax_1.extended_family;
// Chip Extended Model
this->ChipID.ExtendedModel = cpu_info.eax_1.extended_model;
// Get ChipID.ProcessorName from other information already gathered
this->RetrieveClassicalCPUIdentity();
// Cache size
this->Features.L1CacheSize = 0;
this->Features.L2CacheSize = 0;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryQNXMemory()
{
#if defined(__QNX__)
kwsys_stl::string buffer;
kwsys_stl::vector<const char*> args;
args.clear();
args.push_back("showmem");
args.push_back("-S");
args.push_back(0);
buffer = this->RunProcess(args);
args.clear();
size_t pos = buffer.find("System RAM:");
if (pos == buffer.npos)
return false;
pos = buffer.find(":", pos);
size_t pos2 = buffer.find("M (", pos);
if (pos2 == buffer.npos)
return false;
pos++;
while (buffer[pos] == ' ')
pos++;
this->TotalPhysicalMemory = atoi(buffer.substr(pos, pos2 - pos).c_str());
return true;
#endif
return false;
}
bool SystemInformationImplementation::QueryBSDMemory()
{
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
int ctrl[2] = { CTL_HW, HW_PHYSMEM };
#if defined(HW_PHYSMEM64)
int64_t k;
ctrl[1] = HW_PHYSMEM64;
#else
int k;
#endif
size_t sz = sizeof(k);
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
{
return false;
}
this->TotalPhysicalMemory = k>>10>>10;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryQNXProcessor()
{
#if defined(__QNX__)
// the output on my QNX 6.4.1 looks like this:
// Processor1: 686 Pentium II Stepping 3 2175MHz FPU
kwsys_stl::string buffer;
kwsys_stl::vector<const char*> args;
args.clear();
args.push_back("pidin");
args.push_back("info");
args.push_back(0);
buffer = this->RunProcess(args);
args.clear();
size_t pos = buffer.find("Processor1:");
if (pos == buffer.npos)
return false;
size_t pos2 = buffer.find("MHz", pos);
if (pos2 == buffer.npos)
return false;
size_t pos3 = pos2;
while (buffer[pos3] != ' ')
--pos3;
this->CPUSpeedInMHz = atoi(buffer.substr(pos3 + 1, pos2 - pos3 - 1).c_str());
pos2 = buffer.find(" Stepping", pos);
if (pos2 != buffer.npos)
{
pos2 = buffer.find(" ", pos2 + 1);
if (pos2 != buffer.npos && pos2 < pos3)
{
this->ChipID.Revision = atoi(buffer.substr(pos2 + 1, pos3 - pos2).c_str());
}
}
this->NumberOfPhysicalCPU = 0;
do
{
pos = buffer.find("\nProcessor", pos + 1);
++this->NumberOfPhysicalCPU;
} while (pos != buffer.npos);
this->NumberOfLogicalCPU = 1;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryBSDProcessor()
{
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
int k;
size_t sz = sizeof(k);
int ctrl[2] = { CTL_HW, HW_NCPU };
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
{
return false;
}
this->NumberOfPhysicalCPU = k;
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
#if defined(HW_CPUSPEED)
ctrl[1] = HW_CPUSPEED;
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
{
return false;
}
this->CPUSpeedInMHz = (float) k;
#endif
#if defined(CPU_SSE)
ctrl[0] = CTL_MACHDEP;
ctrl[1] = CPU_SSE;
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
{
return false;
}
this->Features.HasSSE = (k > 0);
#endif
#if defined(CPU_SSE2)
ctrl[0] = CTL_MACHDEP;
ctrl[1] = CPU_SSE2;
if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
{
return false;
}
this->Features.HasSSE2 = (k > 0);
#endif
#if defined(CPU_CPUVENDOR)
ctrl[0] = CTL_MACHDEP;
ctrl[1] = CPU_CPUVENDOR;
char vbuf[25];
::memset(vbuf, 0, sizeof(vbuf));
sz = sizeof(vbuf) - 1;
if (sysctl(ctrl, 2, vbuf, &sz, NULL, 0) != 0)
{
return false;
}
this->ChipID.Vendor = vbuf;
this->FindManufacturer();
#endif
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryHPUXMemory()
{
#if defined(__hpux)
unsigned long tv=0;
unsigned long tp=0;
unsigned long av=0;
unsigned long ap=0;
struct pst_static pst;
struct pst_dynamic pdy;
unsigned long ps = 0;
if (pstat_getstatic(&pst, sizeof(pst), (size_t) 1, 0) == -1)
{
return false;
}
ps = pst.page_size;
tp = pst.physical_memory *ps;
tv = (pst.physical_memory + pst.pst_maxmem) * ps;
if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t) 1, 0) == -1)
{
return false;
}
ap = tp - pdy.psd_rm * ps;
av = tv - pdy.psd_vm;
this->TotalVirtualMemory = tv>>10>>10;
this->TotalPhysicalMemory = tp>>10>>10;
this->AvailableVirtualMemory = av>>10>>10;
this->AvailablePhysicalMemory = ap>>10>>10;
return true;
#else
return false;
#endif
}
bool SystemInformationImplementation::QueryHPUXProcessor()
{
#if defined(__hpux)
# if defined(KWSYS_SYS_HAS_MPCTL_H)
int c = mpctl(MPC_GETNUMSPUS_SYS, 0, 0);
if (c <= 0)
{
return false;
}
this->NumberOfPhysicalCPU = c;
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
long t = sysconf(_SC_CPU_VERSION);
if (t == -1)
{
return false;
}
switch (t)
{
case CPU_PA_RISC1_0:
this->ChipID.Vendor = "Hewlett-Packard";
this->ChipID.Family = 0x100;
break;
case CPU_PA_RISC1_1:
this->ChipID.Vendor = "Hewlett-Packard";
this->ChipID.Family = 0x110;
break;
case CPU_PA_RISC2_0:
this->ChipID.Vendor = "Hewlett-Packard";
this->ChipID.Family = 0x200;
break;
# if defined(CPU_HP_INTEL_EM_1_0) || defined(CPU_IA64_ARCHREV_0)
# ifdef CPU_HP_INTEL_EM_1_0
case CPU_HP_INTEL_EM_1_0:
# endif
# ifdef CPU_IA64_ARCHREV_0
case CPU_IA64_ARCHREV_0:
# endif
this->ChipID.Vendor = "GenuineIntel";
this->Features.HasIA64 = true;
break;
# endif
default:
return false;
}
this->FindManufacturer();
return true;
# else
return false;
# endif
#else
return false;
#endif
}
/** Query the operating system information */
bool SystemInformationImplementation::QueryOSInformation()
{
#if defined(_WIN32)
this->OSName = "Windows";
OSVERSIONINFOEXW osvi;
BOOL bIsWindows64Bit;
BOOL bOsVersionInfoEx;
char operatingSystem[256];
// Try calling GetVersionEx using the OSVERSIONINFOEX structure.
ZeroMemory (&osvi, sizeof (OSVERSIONINFOEXW));
osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOEXW);
#ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
# pragma warning (push)
# pragma warning (disable:4996)
#endif
bOsVersionInfoEx = GetVersionExW ((OSVERSIONINFOW*)&osvi);
if (!bOsVersionInfoEx)
{
osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOW);
if (!GetVersionExW((OSVERSIONINFOW*)&osvi))
{
return false;
}
}
#ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
# pragma warning (pop)
#endif
switch (osvi.dwPlatformId)
{
case VER_PLATFORM_WIN32_NT:
// Test for the product.
if (osvi.dwMajorVersion <= 4)
{
this->OSRelease = "NT";
}
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0)
{
this->OSRelease = "2000";
}
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease = "XP";
}
// XP Professional x64
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 2)
{
this->OSRelease = "XP";
}
#ifdef VER_NT_WORKSTATION
// Test for product type.
if (bOsVersionInfoEx)
{
if (osvi.wProductType == VER_NT_WORKSTATION)
{
if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 0)
{
this->OSRelease = "Vista";
}
if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 1)
{
this->OSRelease = "7";
}
// VER_SUITE_PERSONAL may not be defined
#ifdef VER_SUITE_PERSONAL
else
{
if (osvi.wSuiteMask & VER_SUITE_PERSONAL)
{
this->OSRelease += " Personal";
}
else
{
this->OSRelease += " Professional";
}
}
#endif
}
else if (osvi.wProductType == VER_NT_SERVER)
{
// Check for .NET Server instead of Windows XP.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease = ".NET";
}
// Continue with the type detection.
if (osvi.wSuiteMask & VER_SUITE_DATACENTER)
{
this->OSRelease += " DataCenter Server";
}
else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE)
{
this->OSRelease += " Advanced Server";
}
else
{
this->OSRelease += " Server";
}
}
sprintf (operatingSystem, "%s (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
}
else
#endif // VER_NT_WORKSTATION
{
HKEY hKey;
wchar_t szProductType[80];
DWORD dwBufLen;
// Query the registry to retrieve information.
RegOpenKeyExW(HKEY_LOCAL_MACHINE, L"SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0, KEY_QUERY_VALUE, &hKey);
RegQueryValueExW(hKey, L"ProductType", NULL, NULL, (LPBYTE) szProductType, &dwBufLen);
RegCloseKey (hKey);
if (lstrcmpiW(L"WINNT", szProductType) == 0)
{
this->OSRelease += " Professional";
}
if (lstrcmpiW(L"LANMANNT", szProductType) == 0)
{
// Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease += " Standard Server";
}
else
{
this->OSRelease += " Server";
}
}
if (lstrcmpiW(L"SERVERNT", szProductType) == 0)
{
// Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease += " Enterprise Server";
}
else
{
this->OSRelease += " Advanced Server";
}
}
}
// Display version, service pack (if any), and build number.
if (osvi.dwMajorVersion <= 4)
{
// NB: NT 4.0 and earlier.
sprintf (operatingSystem, "version %ld.%ld %s (Build %ld)",
osvi.dwMajorVersion,
osvi.dwMinorVersion,
osvi.szCSDVersion,
osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
}
else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
// Windows XP and .NET server.
typedef BOOL (CALLBACK* LPFNPROC) (HANDLE, BOOL *);
HINSTANCE hKernelDLL;
LPFNPROC DLLProc;
// Load the Kernel32 DLL.
hKernelDLL = LoadLibraryW(L"kernel32");
if (hKernelDLL != NULL) {
// Only XP and .NET Server support IsWOW64Process so... Load dynamically!
DLLProc = (LPFNPROC) GetProcAddress (hKernelDLL, "IsWow64Process");
// If the function address is valid, call the function.
if (DLLProc != NULL) (DLLProc) (GetCurrentProcess (), &bIsWindows64Bit);
else bIsWindows64Bit = false;
// Free the DLL module.
FreeLibrary (hKernelDLL);
}
}
else
{
// Windows 2000 and everything else.
sprintf (operatingSystem,"%s (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
}
break;
case VER_PLATFORM_WIN32_WINDOWS:
// Test for the product.
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0)
{
this->OSRelease = "95";
if(osvi.szCSDVersion[1] == 'C')
{
this->OSRelease += "OSR 2.5";
}
else if(osvi.szCSDVersion[1] == 'B')
{
this->OSRelease += "OSR 2";
}
}
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10)
{
this->OSRelease = "98";
if (osvi.szCSDVersion[1] == 'A' )
{
this->OSRelease += "SE";
}
}
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90)
{
this->OSRelease = "Me";
}
break;
case VER_PLATFORM_WIN32s:
this->OSRelease = "Win32s";
break;
default:
this->OSRelease = "Unknown";
break;
}
// Get the hostname
WORD wVersionRequested;
WSADATA wsaData;
char name[255];
wVersionRequested = MAKEWORD(2,0);
if ( WSAStartup( wVersionRequested, &wsaData ) == 0 )
{
gethostname(name,sizeof(name));
WSACleanup( );
}
this->Hostname = name;
const char* arch = getenv("PROCESSOR_ARCHITECTURE");
if(arch)
{
this->OSPlatform = arch;
}
#else
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if(errorFlag == 0)
{
this->OSName = unameInfo.sysname;
this->Hostname = unameInfo.nodename;
this->OSRelease = unameInfo.release;
this->OSVersion = unameInfo.version;
this->OSPlatform = unameInfo.machine;
}
#ifdef __APPLE__
this->OSName="Unknown Apple OS";
this->OSRelease="Unknown product version";
this->OSVersion="Unknown build version";
this->CallSwVers("-productName",this->OSName);
this->CallSwVers("-productVersion",this->OSRelease);
this->CallSwVers("-buildVersion",this->OSVersion);
#endif
#endif
return true;
}
int SystemInformationImplementation::CallSwVers(
const char *arg,
kwsys_stl::string &ver)
{
#ifdef __APPLE__
kwsys_stl::vector<const char*> args;
args.push_back("sw_vers");
args.push_back(arg);
args.push_back(0);
ver = this->RunProcess(args);
this->TrimNewline(ver);
#else
// avoid C4100
(void)arg;
(void)ver;
#endif
return 0;
}
void SystemInformationImplementation::TrimNewline(kwsys_stl::string& output)
{
// remove \r
kwsys_stl::string::size_type pos=0;
while((pos = output.find("\r", pos)) != kwsys_stl::string::npos)
{
output.erase(pos);
}
// remove \n
pos = 0;
while((pos = output.find("\n", pos)) != kwsys_stl::string::npos)
{
output.erase(pos);
}
}
/** Return true if the machine is 64 bits */
bool SystemInformationImplementation::Is64Bits()
{
return (sizeof(void*) == 8);
}
} // namespace @KWSYS_NAMESPACE@