1614 lines
47 KiB
C
1614 lines
47 KiB
C
/*
|
|
* FILE: sha2.c
|
|
* AUTHOR: Aaron D. Gifford
|
|
* http://www.aarongifford.com/computers/sha.html
|
|
*
|
|
* Copyright (c) 2000-2003, Aaron D. Gifford
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the copyright holder nor the names of contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $
|
|
*/
|
|
|
|
#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
|
|
#include <assert.h> /* assert() */
|
|
#include "cm_sha2.h" /* "sha2.h" -> "cm_sha2.h" renamed for CMake */
|
|
|
|
/*
|
|
* ASSERT NOTE:
|
|
* Some sanity checking code is included using assert(). On my FreeBSD
|
|
* system, this additional code can be removed by compiling with NDEBUG
|
|
* defined. Check your own systems manpage on assert() to see how to
|
|
* compile WITHOUT the sanity checking code on your system.
|
|
*
|
|
* UNROLLED TRANSFORM LOOP NOTE:
|
|
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
|
|
* loop version for the hash transform rounds (defined using macros
|
|
* later in this file). Either define on the command line, for example:
|
|
*
|
|
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
|
|
*
|
|
* or define below:
|
|
*
|
|
* #define SHA2_UNROLL_TRANSFORM
|
|
*
|
|
*/
|
|
|
|
|
|
/*** SHA-224/256/384/512 Machine Architecture Definitions *************/
|
|
/*
|
|
* BYTE_ORDER NOTE:
|
|
*
|
|
* Please make sure that your system defines BYTE_ORDER. If your
|
|
* architecture is little-endian, make sure it also defines
|
|
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
|
|
* equivilent.
|
|
*
|
|
* If your system does not define the above, then you can do so by
|
|
* hand like this:
|
|
*
|
|
* #define LITTLE_ENDIAN 1234
|
|
* #define BIG_ENDIAN 4321
|
|
*
|
|
* And for little-endian machines, add:
|
|
*
|
|
* #define BYTE_ORDER LITTLE_ENDIAN
|
|
*
|
|
* Or for big-endian machines:
|
|
*
|
|
* #define BYTE_ORDER BIG_ENDIAN
|
|
*
|
|
* The FreeBSD machine this was written on defines BYTE_ORDER
|
|
* appropriately by including <sys/types.h> (which in turn includes
|
|
* <machine/endian.h> where the appropriate definitions are actually
|
|
* made).
|
|
*/
|
|
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
|
|
/* CMake modification: use byte order from cmIML. */
|
|
# include "cmIML/ABI.h"
|
|
# undef BYTE_ORDER
|
|
# undef BIG_ENDIAN
|
|
# undef LITTLE_ENDIAN
|
|
# define BYTE_ORDER cmIML_ABI_ENDIAN_ID
|
|
# define BIG_ENDIAN cmIML_ABI_ENDIAN_ID_BIG
|
|
# define LITTLE_ENDIAN cmIML_ABI_ENDIAN_ID_LITTLE
|
|
#endif
|
|
|
|
/* CMake modification: use types computed in header. */
|
|
typedef cm_sha2_uint8_t sha_byte; /* Exactly 1 byte */
|
|
typedef cm_sha2_uint32_t sha_word32; /* Exactly 4 bytes */
|
|
typedef cm_sha2_uint64_t sha_word64; /* Exactly 8 bytes */
|
|
#define SHA_UINT32_C(x) cmIML_INT_UINT32_C(x)
|
|
#define SHA_UINT64_C(x) cmIML_INT_UINT64_C(x)
|
|
#if defined(__BORLANDC__)
|
|
# pragma warn -8004 /* variable assigned value that is never used */
|
|
#endif
|
|
#if defined(__clang__)
|
|
# pragma clang diagnostic ignored "-Wcast-align"
|
|
#endif
|
|
|
|
/*** ENDIAN REVERSAL MACROS *******************************************/
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
#define REVERSE32(w,x) { \
|
|
sha_word32 tmp = (w); \
|
|
tmp = (tmp >> 16) | (tmp << 16); \
|
|
(x) = ((tmp & SHA_UINT32_C(0xff00ff00)) >> 8) | \
|
|
((tmp & SHA_UINT32_C(0x00ff00ff)) << 8); \
|
|
}
|
|
#define REVERSE64(w,x) { \
|
|
sha_word64 tmp = (w); \
|
|
tmp = (tmp >> 32) | (tmp << 32); \
|
|
tmp = ((tmp & SHA_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \
|
|
((tmp & SHA_UINT64_C(0x00ff00ff00ff00ff)) << 8); \
|
|
(x) = ((tmp & SHA_UINT64_C(0xffff0000ffff0000)) >> 16) | \
|
|
((tmp & SHA_UINT64_C(0x0000ffff0000ffff)) << 16); \
|
|
}
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
/*
|
|
* Macro for incrementally adding the unsigned 64-bit integer n to the
|
|
* unsigned 128-bit integer (represented using a two-element array of
|
|
* 64-bit words):
|
|
*/
|
|
#define ADDINC128(w,n) { \
|
|
(w)[0] += (sha_word64)(n); \
|
|
if ((w)[0] < (n)) { \
|
|
(w)[1]++; \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* Macros for copying blocks of memory and for zeroing out ranges
|
|
* of memory. Using these macros makes it easy to switch from
|
|
* using memset()/memcpy() and using bzero()/bcopy().
|
|
*
|
|
* Please define either SHA2_USE_MEMSET_MEMCPY or define
|
|
* SHA2_USE_BZERO_BCOPY depending on which function set you
|
|
* choose to use:
|
|
*/
|
|
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
|
|
/* Default to memset()/memcpy() if no option is specified */
|
|
#define SHA2_USE_MEMSET_MEMCPY 1
|
|
#endif
|
|
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
|
|
/* Abort with an error if BOTH options are defined */
|
|
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
|
|
#endif
|
|
|
|
#ifdef SHA2_USE_MEMSET_MEMCPY
|
|
#define MEMSET_BZERO(p,l) memset((p), 0, (l))
|
|
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
|
|
#endif
|
|
#ifdef SHA2_USE_BZERO_BCOPY
|
|
#define MEMSET_BZERO(p,l) bzero((p), (l))
|
|
#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
|
|
#endif
|
|
|
|
|
|
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
|
|
/*
|
|
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
|
|
*
|
|
* NOTE: In the original SHA-256/384/512 document, the shift-right
|
|
* function was named R and the rotate-right function was called S.
|
|
* (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
|
|
* web.)
|
|
*
|
|
* The newer NIST FIPS 180-2 document uses a much clearer naming
|
|
* scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
|
|
* rotate-left. (See:
|
|
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
|
|
* on the web.)
|
|
*
|
|
* WARNING: These macros must be used cautiously, since they reference
|
|
* supplied parameters sometimes more than once, and thus could have
|
|
* unexpected side-effects if used without taking this into account.
|
|
*/
|
|
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
|
|
#define SHR(b,x) ((x) >> (b))
|
|
/* 32-bit Rotate-right (used in SHA-256): */
|
|
#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
|
|
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
|
|
#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
|
|
/* 32-bit Rotate-left (used in SHA-1): */
|
|
#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b))))
|
|
|
|
/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
/* Function used in SHA-1: */
|
|
#define Parity(x,y,z) ((x) ^ (y) ^ (z))
|
|
|
|
/* Four logical functions used in SHA-256: */
|
|
#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
|
|
#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
|
|
#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR( 3 , (x)))
|
|
#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR( 10, (x)))
|
|
|
|
/* Four of six logical functions used in SHA-384 and SHA-512: */
|
|
#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
|
|
#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
|
|
#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x)))
|
|
#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x)))
|
|
|
|
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
|
|
|
|
/* SHA-224 and SHA-256: */
|
|
void SHA256_Internal_Init(SHA_CTX*, const sha_word32*);
|
|
void SHA256_Internal_Last(SHA_CTX*);
|
|
void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*);
|
|
|
|
/* SHA-384 and SHA-512: */
|
|
void SHA512_Internal_Init(SHA_CTX*, const sha_word64*);
|
|
void SHA512_Internal_Last(SHA_CTX*);
|
|
void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*);
|
|
|
|
|
|
/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/
|
|
|
|
/* Hash constant words K for SHA-1: */
|
|
#define K1_0_TO_19 SHA_UINT32_C(0x5a827999)
|
|
#define K1_20_TO_39 SHA_UINT32_C(0x6ed9eba1)
|
|
#define K1_40_TO_59 SHA_UINT32_C(0x8f1bbcdc)
|
|
#define K1_60_TO_79 SHA_UINT32_C(0xca62c1d6)
|
|
|
|
/* Initial hash value H for SHA-1: */
|
|
static const sha_word32 sha1_initial_hash_value[5] = {
|
|
SHA_UINT32_C(0x67452301),
|
|
SHA_UINT32_C(0xefcdab89),
|
|
SHA_UINT32_C(0x98badcfe),
|
|
SHA_UINT32_C(0x10325476),
|
|
SHA_UINT32_C(0xc3d2e1f0)
|
|
};
|
|
|
|
/* Hash constant words K for SHA-224 and SHA-256: */
|
|
static const sha_word32 K256[64] = {
|
|
SHA_UINT32_C(0x428a2f98), SHA_UINT32_C(0x71374491),
|
|
SHA_UINT32_C(0xb5c0fbcf), SHA_UINT32_C(0xe9b5dba5),
|
|
SHA_UINT32_C(0x3956c25b), SHA_UINT32_C(0x59f111f1),
|
|
SHA_UINT32_C(0x923f82a4), SHA_UINT32_C(0xab1c5ed5),
|
|
SHA_UINT32_C(0xd807aa98), SHA_UINT32_C(0x12835b01),
|
|
SHA_UINT32_C(0x243185be), SHA_UINT32_C(0x550c7dc3),
|
|
SHA_UINT32_C(0x72be5d74), SHA_UINT32_C(0x80deb1fe),
|
|
SHA_UINT32_C(0x9bdc06a7), SHA_UINT32_C(0xc19bf174),
|
|
SHA_UINT32_C(0xe49b69c1), SHA_UINT32_C(0xefbe4786),
|
|
SHA_UINT32_C(0x0fc19dc6), SHA_UINT32_C(0x240ca1cc),
|
|
SHA_UINT32_C(0x2de92c6f), SHA_UINT32_C(0x4a7484aa),
|
|
SHA_UINT32_C(0x5cb0a9dc), SHA_UINT32_C(0x76f988da),
|
|
SHA_UINT32_C(0x983e5152), SHA_UINT32_C(0xa831c66d),
|
|
SHA_UINT32_C(0xb00327c8), SHA_UINT32_C(0xbf597fc7),
|
|
SHA_UINT32_C(0xc6e00bf3), SHA_UINT32_C(0xd5a79147),
|
|
SHA_UINT32_C(0x06ca6351), SHA_UINT32_C(0x14292967),
|
|
SHA_UINT32_C(0x27b70a85), SHA_UINT32_C(0x2e1b2138),
|
|
SHA_UINT32_C(0x4d2c6dfc), SHA_UINT32_C(0x53380d13),
|
|
SHA_UINT32_C(0x650a7354), SHA_UINT32_C(0x766a0abb),
|
|
SHA_UINT32_C(0x81c2c92e), SHA_UINT32_C(0x92722c85),
|
|
SHA_UINT32_C(0xa2bfe8a1), SHA_UINT32_C(0xa81a664b),
|
|
SHA_UINT32_C(0xc24b8b70), SHA_UINT32_C(0xc76c51a3),
|
|
SHA_UINT32_C(0xd192e819), SHA_UINT32_C(0xd6990624),
|
|
SHA_UINT32_C(0xf40e3585), SHA_UINT32_C(0x106aa070),
|
|
SHA_UINT32_C(0x19a4c116), SHA_UINT32_C(0x1e376c08),
|
|
SHA_UINT32_C(0x2748774c), SHA_UINT32_C(0x34b0bcb5),
|
|
SHA_UINT32_C(0x391c0cb3), SHA_UINT32_C(0x4ed8aa4a),
|
|
SHA_UINT32_C(0x5b9cca4f), SHA_UINT32_C(0x682e6ff3),
|
|
SHA_UINT32_C(0x748f82ee), SHA_UINT32_C(0x78a5636f),
|
|
SHA_UINT32_C(0x84c87814), SHA_UINT32_C(0x8cc70208),
|
|
SHA_UINT32_C(0x90befffa), SHA_UINT32_C(0xa4506ceb),
|
|
SHA_UINT32_C(0xbef9a3f7), SHA_UINT32_C(0xc67178f2)
|
|
};
|
|
|
|
/* Initial hash value H for SHA-224: */
|
|
static const sha_word32 sha224_initial_hash_value[8] = {
|
|
SHA_UINT32_C(0xc1059ed8),
|
|
SHA_UINT32_C(0x367cd507),
|
|
SHA_UINT32_C(0x3070dd17),
|
|
SHA_UINT32_C(0xf70e5939),
|
|
SHA_UINT32_C(0xffc00b31),
|
|
SHA_UINT32_C(0x68581511),
|
|
SHA_UINT32_C(0x64f98fa7),
|
|
SHA_UINT32_C(0xbefa4fa4)
|
|
};
|
|
|
|
/* Initial hash value H for SHA-256: */
|
|
static const sha_word32 sha256_initial_hash_value[8] = {
|
|
SHA_UINT32_C(0x6a09e667),
|
|
SHA_UINT32_C(0xbb67ae85),
|
|
SHA_UINT32_C(0x3c6ef372),
|
|
SHA_UINT32_C(0xa54ff53a),
|
|
SHA_UINT32_C(0x510e527f),
|
|
SHA_UINT32_C(0x9b05688c),
|
|
SHA_UINT32_C(0x1f83d9ab),
|
|
SHA_UINT32_C(0x5be0cd19)
|
|
};
|
|
|
|
/* Hash constant words K for SHA-384 and SHA-512: */
|
|
static const sha_word64 K512[80] = {
|
|
SHA_UINT64_C(0x428a2f98d728ae22), SHA_UINT64_C(0x7137449123ef65cd),
|
|
SHA_UINT64_C(0xb5c0fbcfec4d3b2f), SHA_UINT64_C(0xe9b5dba58189dbbc),
|
|
SHA_UINT64_C(0x3956c25bf348b538), SHA_UINT64_C(0x59f111f1b605d019),
|
|
SHA_UINT64_C(0x923f82a4af194f9b), SHA_UINT64_C(0xab1c5ed5da6d8118),
|
|
SHA_UINT64_C(0xd807aa98a3030242), SHA_UINT64_C(0x12835b0145706fbe),
|
|
SHA_UINT64_C(0x243185be4ee4b28c), SHA_UINT64_C(0x550c7dc3d5ffb4e2),
|
|
SHA_UINT64_C(0x72be5d74f27b896f), SHA_UINT64_C(0x80deb1fe3b1696b1),
|
|
SHA_UINT64_C(0x9bdc06a725c71235), SHA_UINT64_C(0xc19bf174cf692694),
|
|
SHA_UINT64_C(0xe49b69c19ef14ad2), SHA_UINT64_C(0xefbe4786384f25e3),
|
|
SHA_UINT64_C(0x0fc19dc68b8cd5b5), SHA_UINT64_C(0x240ca1cc77ac9c65),
|
|
SHA_UINT64_C(0x2de92c6f592b0275), SHA_UINT64_C(0x4a7484aa6ea6e483),
|
|
SHA_UINT64_C(0x5cb0a9dcbd41fbd4), SHA_UINT64_C(0x76f988da831153b5),
|
|
SHA_UINT64_C(0x983e5152ee66dfab), SHA_UINT64_C(0xa831c66d2db43210),
|
|
SHA_UINT64_C(0xb00327c898fb213f), SHA_UINT64_C(0xbf597fc7beef0ee4),
|
|
SHA_UINT64_C(0xc6e00bf33da88fc2), SHA_UINT64_C(0xd5a79147930aa725),
|
|
SHA_UINT64_C(0x06ca6351e003826f), SHA_UINT64_C(0x142929670a0e6e70),
|
|
SHA_UINT64_C(0x27b70a8546d22ffc), SHA_UINT64_C(0x2e1b21385c26c926),
|
|
SHA_UINT64_C(0x4d2c6dfc5ac42aed), SHA_UINT64_C(0x53380d139d95b3df),
|
|
SHA_UINT64_C(0x650a73548baf63de), SHA_UINT64_C(0x766a0abb3c77b2a8),
|
|
SHA_UINT64_C(0x81c2c92e47edaee6), SHA_UINT64_C(0x92722c851482353b),
|
|
SHA_UINT64_C(0xa2bfe8a14cf10364), SHA_UINT64_C(0xa81a664bbc423001),
|
|
SHA_UINT64_C(0xc24b8b70d0f89791), SHA_UINT64_C(0xc76c51a30654be30),
|
|
SHA_UINT64_C(0xd192e819d6ef5218), SHA_UINT64_C(0xd69906245565a910),
|
|
SHA_UINT64_C(0xf40e35855771202a), SHA_UINT64_C(0x106aa07032bbd1b8),
|
|
SHA_UINT64_C(0x19a4c116b8d2d0c8), SHA_UINT64_C(0x1e376c085141ab53),
|
|
SHA_UINT64_C(0x2748774cdf8eeb99), SHA_UINT64_C(0x34b0bcb5e19b48a8),
|
|
SHA_UINT64_C(0x391c0cb3c5c95a63), SHA_UINT64_C(0x4ed8aa4ae3418acb),
|
|
SHA_UINT64_C(0x5b9cca4f7763e373), SHA_UINT64_C(0x682e6ff3d6b2b8a3),
|
|
SHA_UINT64_C(0x748f82ee5defb2fc), SHA_UINT64_C(0x78a5636f43172f60),
|
|
SHA_UINT64_C(0x84c87814a1f0ab72), SHA_UINT64_C(0x8cc702081a6439ec),
|
|
SHA_UINT64_C(0x90befffa23631e28), SHA_UINT64_C(0xa4506cebde82bde9),
|
|
SHA_UINT64_C(0xbef9a3f7b2c67915), SHA_UINT64_C(0xc67178f2e372532b),
|
|
SHA_UINT64_C(0xca273eceea26619c), SHA_UINT64_C(0xd186b8c721c0c207),
|
|
SHA_UINT64_C(0xeada7dd6cde0eb1e), SHA_UINT64_C(0xf57d4f7fee6ed178),
|
|
SHA_UINT64_C(0x06f067aa72176fba), SHA_UINT64_C(0x0a637dc5a2c898a6),
|
|
SHA_UINT64_C(0x113f9804bef90dae), SHA_UINT64_C(0x1b710b35131c471b),
|
|
SHA_UINT64_C(0x28db77f523047d84), SHA_UINT64_C(0x32caab7b40c72493),
|
|
SHA_UINT64_C(0x3c9ebe0a15c9bebc), SHA_UINT64_C(0x431d67c49c100d4c),
|
|
SHA_UINT64_C(0x4cc5d4becb3e42b6), SHA_UINT64_C(0x597f299cfc657e2a),
|
|
SHA_UINT64_C(0x5fcb6fab3ad6faec), SHA_UINT64_C(0x6c44198c4a475817)
|
|
};
|
|
|
|
/* Initial hash value H for SHA-384 */
|
|
static const sha_word64 sha384_initial_hash_value[8] = {
|
|
SHA_UINT64_C(0xcbbb9d5dc1059ed8),
|
|
SHA_UINT64_C(0x629a292a367cd507),
|
|
SHA_UINT64_C(0x9159015a3070dd17),
|
|
SHA_UINT64_C(0x152fecd8f70e5939),
|
|
SHA_UINT64_C(0x67332667ffc00b31),
|
|
SHA_UINT64_C(0x8eb44a8768581511),
|
|
SHA_UINT64_C(0xdb0c2e0d64f98fa7),
|
|
SHA_UINT64_C(0x47b5481dbefa4fa4)
|
|
};
|
|
|
|
/* Initial hash value H for SHA-512 */
|
|
static const sha_word64 sha512_initial_hash_value[8] = {
|
|
SHA_UINT64_C(0x6a09e667f3bcc908),
|
|
SHA_UINT64_C(0xbb67ae8584caa73b),
|
|
SHA_UINT64_C(0x3c6ef372fe94f82b),
|
|
SHA_UINT64_C(0xa54ff53a5f1d36f1),
|
|
SHA_UINT64_C(0x510e527fade682d1),
|
|
SHA_UINT64_C(0x9b05688c2b3e6c1f),
|
|
SHA_UINT64_C(0x1f83d9abfb41bd6b),
|
|
SHA_UINT64_C(0x5be0cd19137e2179)
|
|
};
|
|
|
|
/*
|
|
* Constant used by SHA224/256/384/512_End() functions for converting the
|
|
* digest to a readable hexadecimal character string:
|
|
*/
|
|
static const char *sha_hex_digits = "0123456789abcdef";
|
|
|
|
|
|
/*** SHA-1: ***********************************************************/
|
|
void SHA1_Init(SHA_CTX* context) {
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5);
|
|
MEMSET_BZERO(context->s1.buffer, 64);
|
|
context->s1.bitcount = 0;
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-1 round macros: */
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
#define ROUND1_0_TO_15(a,b,c,d,e) \
|
|
REVERSE32(*data++, W1[j]); \
|
|
(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
|
|
K1_0_TO_19 + W1[j]; \
|
|
(b) = ROTL32(30, (b)); \
|
|
j++;
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND1_0_TO_15(a,b,c,d,e) \
|
|
(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
|
|
K1_0_TO_19 + ( W1[j] = *data++ ); \
|
|
(b) = ROTL32(30, (b)); \
|
|
j++;
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND1_16_TO_19(a,b,c,d,e) \
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
|
|
(e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
|
|
(b) = ROTL32(30, b); \
|
|
j++;
|
|
|
|
#define ROUND1_20_TO_39(a,b,c,d,e) \
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
|
|
(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
|
|
(b) = ROTL32(30, b); \
|
|
j++;
|
|
|
|
#define ROUND1_40_TO_59(a,b,c,d,e) \
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
|
|
(e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
|
|
(b) = ROTL32(30, b); \
|
|
j++;
|
|
|
|
#define ROUND1_60_TO_79(a,b,c,d,e) \
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
|
|
(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
|
|
(b) = ROTL32(30, b); \
|
|
j++;
|
|
|
|
void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
|
|
sha_word32 a, b, c, d, e;
|
|
sha_word32 T1, *W1;
|
|
int j;
|
|
|
|
W1 = (sha_word32*)context->s1.buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->s1.state[0];
|
|
b = context->s1.state[1];
|
|
c = context->s1.state[2];
|
|
d = context->s1.state[3];
|
|
e = context->s1.state[4];
|
|
|
|
j = 0;
|
|
|
|
/* Rounds 0 to 15 unrolled: */
|
|
ROUND1_0_TO_15(a,b,c,d,e);
|
|
ROUND1_0_TO_15(e,a,b,c,d);
|
|
ROUND1_0_TO_15(d,e,a,b,c);
|
|
ROUND1_0_TO_15(c,d,e,a,b);
|
|
ROUND1_0_TO_15(b,c,d,e,a);
|
|
ROUND1_0_TO_15(a,b,c,d,e);
|
|
ROUND1_0_TO_15(e,a,b,c,d);
|
|
ROUND1_0_TO_15(d,e,a,b,c);
|
|
ROUND1_0_TO_15(c,d,e,a,b);
|
|
ROUND1_0_TO_15(b,c,d,e,a);
|
|
ROUND1_0_TO_15(a,b,c,d,e);
|
|
ROUND1_0_TO_15(e,a,b,c,d);
|
|
ROUND1_0_TO_15(d,e,a,b,c);
|
|
ROUND1_0_TO_15(c,d,e,a,b);
|
|
ROUND1_0_TO_15(b,c,d,e,a);
|
|
ROUND1_0_TO_15(a,b,c,d,e);
|
|
|
|
/* Rounds 16 to 19 unrolled: */
|
|
ROUND1_16_TO_19(e,a,b,c,d);
|
|
ROUND1_16_TO_19(d,e,a,b,c);
|
|
ROUND1_16_TO_19(c,d,e,a,b);
|
|
ROUND1_16_TO_19(b,c,d,e,a);
|
|
|
|
/* Rounds 20 to 39 unrolled: */
|
|
ROUND1_20_TO_39(a,b,c,d,e);
|
|
ROUND1_20_TO_39(e,a,b,c,d);
|
|
ROUND1_20_TO_39(d,e,a,b,c);
|
|
ROUND1_20_TO_39(c,d,e,a,b);
|
|
ROUND1_20_TO_39(b,c,d,e,a);
|
|
ROUND1_20_TO_39(a,b,c,d,e);
|
|
ROUND1_20_TO_39(e,a,b,c,d);
|
|
ROUND1_20_TO_39(d,e,a,b,c);
|
|
ROUND1_20_TO_39(c,d,e,a,b);
|
|
ROUND1_20_TO_39(b,c,d,e,a);
|
|
ROUND1_20_TO_39(a,b,c,d,e);
|
|
ROUND1_20_TO_39(e,a,b,c,d);
|
|
ROUND1_20_TO_39(d,e,a,b,c);
|
|
ROUND1_20_TO_39(c,d,e,a,b);
|
|
ROUND1_20_TO_39(b,c,d,e,a);
|
|
ROUND1_20_TO_39(a,b,c,d,e);
|
|
ROUND1_20_TO_39(e,a,b,c,d);
|
|
ROUND1_20_TO_39(d,e,a,b,c);
|
|
ROUND1_20_TO_39(c,d,e,a,b);
|
|
ROUND1_20_TO_39(b,c,d,e,a);
|
|
|
|
/* Rounds 40 to 59 unrolled: */
|
|
ROUND1_40_TO_59(a,b,c,d,e);
|
|
ROUND1_40_TO_59(e,a,b,c,d);
|
|
ROUND1_40_TO_59(d,e,a,b,c);
|
|
ROUND1_40_TO_59(c,d,e,a,b);
|
|
ROUND1_40_TO_59(b,c,d,e,a);
|
|
ROUND1_40_TO_59(a,b,c,d,e);
|
|
ROUND1_40_TO_59(e,a,b,c,d);
|
|
ROUND1_40_TO_59(d,e,a,b,c);
|
|
ROUND1_40_TO_59(c,d,e,a,b);
|
|
ROUND1_40_TO_59(b,c,d,e,a);
|
|
ROUND1_40_TO_59(a,b,c,d,e);
|
|
ROUND1_40_TO_59(e,a,b,c,d);
|
|
ROUND1_40_TO_59(d,e,a,b,c);
|
|
ROUND1_40_TO_59(c,d,e,a,b);
|
|
ROUND1_40_TO_59(b,c,d,e,a);
|
|
ROUND1_40_TO_59(a,b,c,d,e);
|
|
ROUND1_40_TO_59(e,a,b,c,d);
|
|
ROUND1_40_TO_59(d,e,a,b,c);
|
|
ROUND1_40_TO_59(c,d,e,a,b);
|
|
ROUND1_40_TO_59(b,c,d,e,a);
|
|
|
|
/* Rounds 60 to 79 unrolled: */
|
|
ROUND1_60_TO_79(a,b,c,d,e);
|
|
ROUND1_60_TO_79(e,a,b,c,d);
|
|
ROUND1_60_TO_79(d,e,a,b,c);
|
|
ROUND1_60_TO_79(c,d,e,a,b);
|
|
ROUND1_60_TO_79(b,c,d,e,a);
|
|
ROUND1_60_TO_79(a,b,c,d,e);
|
|
ROUND1_60_TO_79(e,a,b,c,d);
|
|
ROUND1_60_TO_79(d,e,a,b,c);
|
|
ROUND1_60_TO_79(c,d,e,a,b);
|
|
ROUND1_60_TO_79(b,c,d,e,a);
|
|
ROUND1_60_TO_79(a,b,c,d,e);
|
|
ROUND1_60_TO_79(e,a,b,c,d);
|
|
ROUND1_60_TO_79(d,e,a,b,c);
|
|
ROUND1_60_TO_79(c,d,e,a,b);
|
|
ROUND1_60_TO_79(b,c,d,e,a);
|
|
ROUND1_60_TO_79(a,b,c,d,e);
|
|
ROUND1_60_TO_79(e,a,b,c,d);
|
|
ROUND1_60_TO_79(d,e,a,b,c);
|
|
ROUND1_60_TO_79(c,d,e,a,b);
|
|
ROUND1_60_TO_79(b,c,d,e,a);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->s1.state[0] += a;
|
|
context->s1.state[1] += b;
|
|
context->s1.state[2] += c;
|
|
context->s1.state[3] += d;
|
|
context->s1.state[4] += e;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = T1 = 0;
|
|
}
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
|
|
sha_word32 a, b, c, d, e;
|
|
sha_word32 T1, *W1;
|
|
int j;
|
|
|
|
W1 = (sha_word32*)context->s1.buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->s1.state[0];
|
|
b = context->s1.state[1];
|
|
c = context->s1.state[2];
|
|
d = context->s1.state[3];
|
|
e = context->s1.state[4];
|
|
j = 0;
|
|
do {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
T1 = data[j];
|
|
/* Copy data while converting to host byte order */
|
|
REVERSE32(*data++, W1[j]);
|
|
T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j];
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++);
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
e = d;
|
|
d = c;
|
|
c = ROTL32(30, b);
|
|
b = a;
|
|
a = T1;
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do {
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
|
|
T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1));
|
|
e = d;
|
|
d = c;
|
|
c = ROTL32(30, b);
|
|
b = a;
|
|
a = T1;
|
|
j++;
|
|
} while (j < 20);
|
|
|
|
do {
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
|
|
T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1));
|
|
e = d;
|
|
d = c;
|
|
c = ROTL32(30, b);
|
|
b = a;
|
|
a = T1;
|
|
j++;
|
|
} while (j < 40);
|
|
|
|
do {
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
|
|
T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1));
|
|
e = d;
|
|
d = c;
|
|
c = ROTL32(30, b);
|
|
b = a;
|
|
a = T1;
|
|
j++;
|
|
} while (j < 60);
|
|
|
|
do {
|
|
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
|
|
T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1));
|
|
e = d;
|
|
d = c;
|
|
c = ROTL32(30, b);
|
|
b = a;
|
|
a = T1;
|
|
j++;
|
|
} while (j < 80);
|
|
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->s1.state[0] += a;
|
|
context->s1.state[1] += b;
|
|
context->s1.state[2] += c;
|
|
context->s1.state[3] += d;
|
|
context->s1.state[4] += e;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = T1 = 0;
|
|
}
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
|
|
unsigned int freespace, usedspace;
|
|
if (len == 0) {
|
|
/* Calling with no data is valid - we do nothing */
|
|
return;
|
|
}
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
|
|
|
|
usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
|
|
if (usedspace > 0) {
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = 64 - usedspace;
|
|
|
|
if (len >= freespace) {
|
|
/* Fill the buffer completely and process it */
|
|
MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace);
|
|
context->s1.bitcount += freespace << 3;
|
|
len -= freespace;
|
|
data += freespace;
|
|
SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
|
|
} else {
|
|
/* The buffer is not yet full */
|
|
MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len);
|
|
context->s1.bitcount += len << 3;
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= 64) {
|
|
/* Process as many complete blocks as we can */
|
|
SHA1_Internal_Transform(context, (sha_word32*)data);
|
|
context->s1.bitcount += 512;
|
|
len -= 64;
|
|
data += 64;
|
|
}
|
|
if (len > 0) {
|
|
/* There's left-overs, so save 'em */
|
|
MEMCPY_BCOPY(context->s1.buffer, data, len);
|
|
context->s1.bitcount += len << 3;
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
void SHA1_Final(sha_byte digest[], SHA_CTX* context) {
|
|
sha_word32 *d = (sha_word32*)digest;
|
|
unsigned int usedspace;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
if (digest == (sha_byte*)0) {
|
|
/*
|
|
* No digest buffer, so we can do nothing
|
|
* except clean up and go home
|
|
*/
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
return;
|
|
}
|
|
|
|
usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
|
|
if (usedspace == 0) {
|
|
/* Set-up for the last transform: */
|
|
MEMSET_BZERO(context->s1.buffer, 56);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->s1.buffer = 0x80;
|
|
} else {
|
|
/* Begin padding with a 1 bit: */
|
|
context->s1.buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= 56) {
|
|
/* Set-up for the last transform: */
|
|
MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace);
|
|
} else {
|
|
if (usedspace < 64) {
|
|
MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
MEMSET_BZERO(context->s1.buffer, 56);
|
|
}
|
|
/* Clean up: */
|
|
usedspace = 0;
|
|
}
|
|
/* Set the bit count: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64(context->s1.bitcount,context->s1.bitcount);
|
|
#endif
|
|
*(sha_word64*)&context->s1.buffer[56] = context->s1.bitcount;
|
|
|
|
/* Final transform: */
|
|
SHA1_Internal_Transform(context, (sha_word32*)context->s1.buffer);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) {
|
|
REVERSE32(context->s1.state[j],context->s1.state[j]);
|
|
*d++ = context->s1.state[j];
|
|
}
|
|
}
|
|
#else
|
|
MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH);
|
|
#endif
|
|
|
|
/* Clean up: */
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
|
|
char *SHA1_End(SHA_CTX* context, char buffer[]) {
|
|
sha_byte digest[SHA1_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
if (buffer != (char*)0) {
|
|
SHA1_Final(digest, context);
|
|
|
|
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char)0;
|
|
} else {
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
|
|
SHA_CTX context;
|
|
|
|
SHA1_Init(&context);
|
|
SHA1_Update(&context, data, len);
|
|
return SHA1_End(&context, digest);
|
|
}
|
|
|
|
|
|
/*** SHA-256: *********************************************************/
|
|
void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) {
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8);
|
|
MEMSET_BZERO(context->s256.buffer, 64);
|
|
context->s256.bitcount = 0;
|
|
}
|
|
|
|
void SHA256_Init(SHA_CTX* context) {
|
|
SHA256_Internal_Init(context, sha256_initial_hash_value);
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-256 round macros: */
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
|
REVERSE32(*data++, W256[j]); \
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
|
K256[j] + W256[j]; \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
|
j++
|
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
|
K256[j] + (W256[j] = *data++); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
|
j++
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND256(a,b,c,d,e,f,g,h) \
|
|
s0 = W256[(j+1)&0x0f]; \
|
|
s0 = sigma0_256(s0); \
|
|
s1 = W256[(j+14)&0x0f]; \
|
|
s1 = sigma1_256(s1); \
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
|
j++
|
|
|
|
void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
|
|
sha_word32 a, b, c, d, e, f, g, h, s0, s1;
|
|
sha_word32 T1, *W256;
|
|
int j;
|
|
|
|
W256 = (sha_word32*)context->s256.buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->s256.state[0];
|
|
b = context->s256.state[1];
|
|
c = context->s256.state[2];
|
|
d = context->s256.state[3];
|
|
e = context->s256.state[4];
|
|
f = context->s256.state[5];
|
|
g = context->s256.state[6];
|
|
h = context->s256.state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
/* Rounds 0 to 15 (unrolled): */
|
|
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
|
|
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
|
|
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
|
|
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
|
|
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
|
|
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
|
|
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
|
|
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds to 64: */
|
|
do {
|
|
ROUND256(a,b,c,d,e,f,g,h);
|
|
ROUND256(h,a,b,c,d,e,f,g);
|
|
ROUND256(g,h,a,b,c,d,e,f);
|
|
ROUND256(f,g,h,a,b,c,d,e);
|
|
ROUND256(e,f,g,h,a,b,c,d);
|
|
ROUND256(d,e,f,g,h,a,b,c);
|
|
ROUND256(c,d,e,f,g,h,a,b);
|
|
ROUND256(b,c,d,e,f,g,h,a);
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->s256.state[0] += a;
|
|
context->s256.state[1] += b;
|
|
context->s256.state[2] += c;
|
|
context->s256.state[3] += d;
|
|
context->s256.state[4] += e;
|
|
context->s256.state[5] += f;
|
|
context->s256.state[6] += g;
|
|
context->s256.state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
|
|
sha_word32 a, b, c, d, e, f, g, h, s0, s1;
|
|
sha_word32 T1, T2, *W256;
|
|
int j;
|
|
|
|
W256 = (sha_word32*)context->s256.buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->s256.state[0];
|
|
b = context->s256.state[1];
|
|
c = context->s256.state[2];
|
|
d = context->s256.state[3];
|
|
e = context->s256.state[4];
|
|
f = context->s256.state[5];
|
|
g = context->s256.state[6];
|
|
h = context->s256.state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Copy data while converting to host byte order */
|
|
REVERSE32(*data++,W256[j]);
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
/* Apply the SHA-256 compression function to update a..h with copy */
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do {
|
|
/* Part of the message block expansion: */
|
|
s0 = W256[(j+1)&0x0f];
|
|
s0 = sigma0_256(s0);
|
|
s1 = W256[(j+14)&0x0f];
|
|
s1 = sigma1_256(s1);
|
|
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->s256.state[0] += a;
|
|
context->s256.state[1] += b;
|
|
context->s256.state[2] += c;
|
|
context->s256.state[3] += d;
|
|
context->s256.state[4] += e;
|
|
context->s256.state[5] += f;
|
|
context->s256.state[6] += g;
|
|
context->s256.state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
|
|
unsigned int freespace, usedspace;
|
|
|
|
if (len == 0) {
|
|
/* Calling with no data is valid - we do nothing */
|
|
return;
|
|
}
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
|
|
|
|
usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
|
|
if (usedspace > 0) {
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = 64 - usedspace;
|
|
|
|
if (len >= freespace) {
|
|
/* Fill the buffer completely and process it */
|
|
MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace);
|
|
context->s256.bitcount += freespace << 3;
|
|
len -= freespace;
|
|
data += freespace;
|
|
SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
|
|
} else {
|
|
/* The buffer is not yet full */
|
|
MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len);
|
|
context->s256.bitcount += len << 3;
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= 64) {
|
|
/* Process as many complete blocks as we can */
|
|
SHA256_Internal_Transform(context, (sha_word32*)data);
|
|
context->s256.bitcount += 512;
|
|
len -= 64;
|
|
data += 64;
|
|
}
|
|
if (len > 0) {
|
|
/* There's left-overs, so save 'em */
|
|
MEMCPY_BCOPY(context->s256.buffer, data, len);
|
|
context->s256.bitcount += len << 3;
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
void SHA256_Internal_Last(SHA_CTX* context) {
|
|
unsigned int usedspace;
|
|
|
|
usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64(context->s256.bitcount,context->s256.bitcount);
|
|
#endif
|
|
if (usedspace > 0) {
|
|
/* Begin padding with a 1 bit: */
|
|
context->s256.buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= 56) {
|
|
/* Set-up for the last transform: */
|
|
MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace);
|
|
} else {
|
|
if (usedspace < 64) {
|
|
MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
MEMSET_BZERO(context->s256.buffer, 56);
|
|
}
|
|
/* Clean up: */
|
|
usedspace = 0;
|
|
} else {
|
|
/* Set-up for the last transform: */
|
|
MEMSET_BZERO(context->s256.buffer, 56);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->s256.buffer = 0x80;
|
|
}
|
|
/* Set the bit count: */
|
|
*(sha_word64*)&context->s256.buffer[56] = context->s256.bitcount;
|
|
|
|
/* Final transform: */
|
|
SHA256_Internal_Transform(context, (sha_word32*)context->s256.buffer);
|
|
}
|
|
|
|
void SHA256_Final(sha_byte digest[], SHA_CTX* context) {
|
|
sha_word32 *d = (sha_word32*)digest;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != (sha_byte*)0) {
|
|
SHA256_Internal_Last(context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) {
|
|
REVERSE32(context->s256.state[j],context->s256.state[j]);
|
|
*d++ = context->s256.state[j];
|
|
}
|
|
}
|
|
#else
|
|
MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Clean up state data: */
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
|
|
char *SHA256_End(SHA_CTX* context, char buffer[]) {
|
|
sha_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
if (buffer != (char*)0) {
|
|
SHA256_Final(digest, context);
|
|
|
|
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char)0;
|
|
} else {
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
|
|
SHA_CTX context;
|
|
|
|
SHA256_Init(&context);
|
|
SHA256_Update(&context, data, len);
|
|
return SHA256_End(&context, digest);
|
|
}
|
|
|
|
|
|
/*** SHA-224: *********************************************************/
|
|
void SHA224_Init(SHA_CTX* context) {
|
|
SHA256_Internal_Init(context, sha224_initial_hash_value);
|
|
}
|
|
|
|
void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
|
|
SHA256_Internal_Transform(context, data);
|
|
}
|
|
|
|
void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
|
|
SHA256_Update(context, data, len);
|
|
}
|
|
|
|
void SHA224_Final(sha_byte digest[], SHA_CTX* context) {
|
|
sha_word32 *d = (sha_word32*)digest;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != (sha_byte*)0) {
|
|
SHA256_Internal_Last(context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) {
|
|
REVERSE32(context->s256.state[j],context->s256.state[j]);
|
|
*d++ = context->s256.state[j];
|
|
}
|
|
}
|
|
#else
|
|
MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Clean up state data: */
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
|
|
char *SHA224_End(SHA_CTX* context, char buffer[]) {
|
|
sha_byte digest[SHA224_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
if (buffer != (char*)0) {
|
|
SHA224_Final(digest, context);
|
|
|
|
for (i = 0; i < SHA224_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char)0;
|
|
} else {
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) {
|
|
SHA_CTX context;
|
|
|
|
SHA224_Init(&context);
|
|
SHA224_Update(&context, data, len);
|
|
return SHA224_End(&context, digest);
|
|
}
|
|
|
|
|
|
/*** SHA-512: *********************************************************/
|
|
void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) {
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8);
|
|
MEMSET_BZERO(context->s512.buffer, 128);
|
|
context->s512.bitcount[0] = context->s512.bitcount[1] = 0;
|
|
}
|
|
|
|
void SHA512_Init(SHA_CTX* context) {
|
|
SHA512_Internal_Init(context, sha512_initial_hash_value);
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-512 round macros: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
|
|
REVERSE64(*data++, W512[j]); \
|
|
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
|
|
K512[j] + W512[j]; \
|
|
(d) += T1, \
|
|
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
|
|
j++
|
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
|
|
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
|
|
K512[j] + (W512[j] = *data++); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
|
|
j++
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND512(a,b,c,d,e,f,g,h) \
|
|
s0 = W512[(j+1)&0x0f]; \
|
|
s0 = sigma0_512(s0); \
|
|
s1 = W512[(j+14)&0x0f]; \
|
|
s1 = sigma1_512(s1); \
|
|
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
|
|
j++
|
|
|
|
void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
|
|
sha_word64 a, b, c, d, e, f, g, h, s0, s1;
|
|
sha_word64 T1, *W512 = (sha_word64*)context->s512.buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->s512.state[0];
|
|
b = context->s512.state[1];
|
|
c = context->s512.state[2];
|
|
d = context->s512.state[3];
|
|
e = context->s512.state[4];
|
|
f = context->s512.state[5];
|
|
g = context->s512.state[6];
|
|
h = context->s512.state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
|
|
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
|
|
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
|
|
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
|
|
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
|
|
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
|
|
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
|
|
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds up to 79: */
|
|
do {
|
|
ROUND512(a,b,c,d,e,f,g,h);
|
|
ROUND512(h,a,b,c,d,e,f,g);
|
|
ROUND512(g,h,a,b,c,d,e,f);
|
|
ROUND512(f,g,h,a,b,c,d,e);
|
|
ROUND512(e,f,g,h,a,b,c,d);
|
|
ROUND512(d,e,f,g,h,a,b,c);
|
|
ROUND512(c,d,e,f,g,h,a,b);
|
|
ROUND512(b,c,d,e,f,g,h,a);
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->s512.state[0] += a;
|
|
context->s512.state[1] += b;
|
|
context->s512.state[2] += c;
|
|
context->s512.state[3] += d;
|
|
context->s512.state[4] += e;
|
|
context->s512.state[5] += f;
|
|
context->s512.state[6] += g;
|
|
context->s512.state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
|
|
sha_word64 a, b, c, d, e, f, g, h, s0, s1;
|
|
sha_word64 T1, T2, *W512 = (sha_word64*)context->s512.buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->s512.state[0];
|
|
b = context->s512.state[1];
|
|
c = context->s512.state[2];
|
|
d = context->s512.state[3];
|
|
e = context->s512.state[4];
|
|
f = context->s512.state[5];
|
|
g = context->s512.state[6];
|
|
h = context->s512.state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert TO host byte order */
|
|
REVERSE64(*data++, W512[j]);
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
/* Apply the SHA-512 compression function to update a..h with copy */
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
T2 = Sigma0_512(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do {
|
|
/* Part of the message block expansion: */
|
|
s0 = W512[(j+1)&0x0f];
|
|
s0 = sigma0_512(s0);
|
|
s1 = W512[(j+14)&0x0f];
|
|
s1 = sigma1_512(s1);
|
|
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
|
|
T2 = Sigma0_512(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->s512.state[0] += a;
|
|
context->s512.state[1] += b;
|
|
context->s512.state[2] += c;
|
|
context->s512.state[3] += d;
|
|
context->s512.state[4] += e;
|
|
context->s512.state[5] += f;
|
|
context->s512.state[6] += g;
|
|
context->s512.state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
|
|
unsigned int freespace, usedspace;
|
|
|
|
if (len == 0) {
|
|
/* Calling with no data is valid - we do nothing */
|
|
return;
|
|
}
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
|
|
|
|
usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
|
|
if (usedspace > 0) {
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = 128 - usedspace;
|
|
|
|
if (len >= freespace) {
|
|
/* Fill the buffer completely and process it */
|
|
MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace);
|
|
ADDINC128(context->s512.bitcount, freespace << 3);
|
|
len -= freespace;
|
|
data += freespace;
|
|
SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
|
|
} else {
|
|
/* The buffer is not yet full */
|
|
MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len);
|
|
ADDINC128(context->s512.bitcount, len << 3);
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= 128) {
|
|
/* Process as many complete blocks as we can */
|
|
SHA512_Internal_Transform(context, (sha_word64*)data);
|
|
ADDINC128(context->s512.bitcount, 1024);
|
|
len -= 128;
|
|
data += 128;
|
|
}
|
|
if (len > 0) {
|
|
/* There's left-overs, so save 'em */
|
|
MEMCPY_BCOPY(context->s512.buffer, data, len);
|
|
ADDINC128(context->s512.bitcount, len << 3);
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
void SHA512_Internal_Last(SHA_CTX* context) {
|
|
unsigned int usedspace;
|
|
|
|
usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]);
|
|
REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]);
|
|
#endif
|
|
if (usedspace > 0) {
|
|
/* Begin padding with a 1 bit: */
|
|
context->s512.buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= 112) {
|
|
/* Set-up for the last transform: */
|
|
MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace);
|
|
} else {
|
|
if (usedspace < 128) {
|
|
MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
MEMSET_BZERO(context->s512.buffer, 112);
|
|
}
|
|
/* Clean up: */
|
|
usedspace = 0;
|
|
} else {
|
|
/* Prepare for final transform: */
|
|
MEMSET_BZERO(context->s512.buffer, 112);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->s512.buffer = 0x80;
|
|
}
|
|
/* Store the length of input data (in bits): */
|
|
*(sha_word64*)&context->s512.buffer[112] = context->s512.bitcount[1];
|
|
*(sha_word64*)&context->s512.buffer[120] = context->s512.bitcount[0];
|
|
|
|
/* Final transform: */
|
|
SHA512_Internal_Transform(context, (sha_word64*)context->s512.buffer);
|
|
}
|
|
|
|
void SHA512_Final(sha_byte digest[], SHA_CTX* context) {
|
|
sha_word64 *d = (sha_word64*)digest;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != (sha_byte*)0) {
|
|
SHA512_Internal_Last(context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) {
|
|
REVERSE64(context->s512.state[j],context->s512.state[j]);
|
|
*d++ = context->s512.state[j];
|
|
}
|
|
}
|
|
#else
|
|
MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Zero out state data */
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
|
|
char *SHA512_End(SHA_CTX* context, char buffer[]) {
|
|
sha_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
if (buffer != (char*)0) {
|
|
SHA512_Final(digest, context);
|
|
|
|
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char)0;
|
|
} else {
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
|
|
SHA_CTX context;
|
|
|
|
SHA512_Init(&context);
|
|
SHA512_Update(&context, data, len);
|
|
return SHA512_End(&context, digest);
|
|
}
|
|
|
|
|
|
/*** SHA-384: *********************************************************/
|
|
void SHA384_Init(SHA_CTX* context) {
|
|
SHA512_Internal_Init(context, sha384_initial_hash_value);
|
|
}
|
|
|
|
void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) {
|
|
SHA512_Update(context, data, len);
|
|
}
|
|
|
|
void SHA384_Final(sha_byte digest[], SHA_CTX* context) {
|
|
sha_word64 *d = (sha_word64*)digest;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != (sha_byte*)0) {
|
|
SHA512_Internal_Last(context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) {
|
|
REVERSE64(context->s512.state[j],context->s512.state[j]);
|
|
*d++ = context->s512.state[j];
|
|
}
|
|
}
|
|
#else
|
|
MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Zero out state data */
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
|
|
char *SHA384_End(SHA_CTX* context, char buffer[]) {
|
|
sha_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
/* Sanity check: */
|
|
assert(context != (SHA_CTX*)0);
|
|
|
|
if (buffer != (char*)0) {
|
|
SHA384_Final(digest, context);
|
|
|
|
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char)0;
|
|
} else {
|
|
MEMSET_BZERO(context, sizeof(*context));
|
|
}
|
|
MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
|
|
SHA_CTX context;
|
|
|
|
SHA384_Init(&context);
|
|
SHA384_Update(&context, data, len);
|
|
return SHA384_End(&context, digest);
|
|
}
|