CMake/Source/kwsys/SystemInformation.cxx

3180 lines
97 KiB
C++

/*=========================================================================
Program: BatchMake
Module: $RCSfile$
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) 2005 Insight Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "kwsysPrivate.h"
#include KWSYS_HEADER(FundamentalType.h)
#include KWSYS_HEADER(stl/string)
#include KWSYS_HEADER(stl/vector)
#include KWSYS_HEADER(ios/iosfwd)
#include KWSYS_HEADER(SystemInformation.hxx)
#include KWSYS_HEADER(Process.h)
#include KWSYS_HEADER(ios/iostream)
#include KWSYS_HEADER(ios/sstream)
// Work-around CMake dependency scanning limitation. This must
// duplicate the above list of headers.
#if 0
# include "FundamentalType.h.in"
# include "SystemInformation.hxx.in"
# include "Process.h.in"
# include "Configure.hxx.in"
# include "kwsys_stl.hxx.in"
# include "kwsys_stl_vector.in"
# include "kwsys_stl_iosfwd.in"
# include "kwsys_ios_sstream.h.in"
# include "kwsys_ios_iostream.h.in"
#endif
#ifndef WIN32
# include <sys/utsname.h> // int uname(struct utsname *buf);
#endif
#ifdef _WIN32
# include <windows.h>
#endif
#ifdef __linux
# include <sys/procfs.h>
# include <sys/types.h>
# include <unistd.h>
# include <fcntl.h>
# include <ctype.h> // int isdigit(int c);
# include <errno.h> // extern int errno;
# include <sys/time.h>
#elif __hpux
# include <sys/param.h>
# include <sys/pstat.h>
#endif
#include <memory.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
namespace KWSYS_NAMESPACE
{
// Create longlong
#if KWSYS_USE_LONG_LONG
typedef long long LongLong;
#elif KWSYS_USE___INT64
typedef __int64 LongLong;
#else
# error "No Long Long"
#endif
// Define SystemInformationImplementation class
typedef void (*DELAY_FUNC)(unsigned int uiMS);
class SystemInformationImplementation
{
public:
SystemInformationImplementation ();
~SystemInformationImplementation ();
const char * GetVendorString();
const char * GetVendorID();
kwsys_stl::string GetTypeID();
kwsys_stl::string GetFamilyID();
kwsys_stl::string GetModelID();
kwsys_stl::string GetSteppingCode();
const char * GetExtendedProcessorName();
const char * GetProcessorSerialNumber();
int GetProcessorCacheSize();
int GetLogicalProcessorsPerPhysical();
float GetProcessorClockFrequency();
int GetProcessorAPICID();
int GetProcessorCacheXSize(long int);
bool DoesCPUSupportFeature(long int);
const char * GetOSName();
const char * GetHostname();
const char * GetOSRelease();
const char * GetOSVersion();
const char * GetOSPlatform();
bool Is64Bits();
unsigned int GetNumberOfLogicalCPU(); // per physical cpu
unsigned int GetNumberOfPhysicalCPU();
bool DoesCPUSupportCPUID();
// Retrieve memory information in megabyte.
unsigned long GetTotalVirtualMemory();
unsigned long GetAvailableVirtualMemory();
unsigned long GetTotalPhysicalMemory();
unsigned long GetAvailablePhysicalMemory();
/** Run the different checks */
void RunCPUCheck();
void RunOSCheck();
void RunMemoryCheck();
public:
#define VENDOR_STRING_LENGTH (12 + 1)
#define CHIPNAME_STRING_LENGTH (48 + 1)
#define SERIALNUMBER_STRING_LENGTH (29 + 1)
typedef struct tagID
{
int Type;
int Family;
int Model;
int Revision;
int ExtendedFamily;
int ExtendedModel;
char ProcessorName[CHIPNAME_STRING_LENGTH];
char Vendor[VENDOR_STRING_LENGTH];
char SerialNumber[SERIALNUMBER_STRING_LENGTH];
} ID;
typedef struct tagCPUPowerManagement
{
bool HasVoltageID;
bool HasFrequencyID;
bool HasTempSenseDiode;
} CPUPowerManagement;
typedef struct tagCPUExtendedFeatures
{
bool Has3DNow;
bool Has3DNowPlus;
bool SupportsMP;
bool HasMMXPlus;
bool HasSSEMMX;
bool SupportsHyperthreading;
int LogicalProcessorsPerPhysical;
int APIC_ID;
CPUPowerManagement PowerManagement;
} CPUExtendedFeatures;
typedef struct CPUtagFeatures
{
bool HasFPU;
bool HasTSC;
bool HasMMX;
bool HasSSE;
bool HasSSEFP;
bool HasSSE2;
bool HasIA64;
bool HasAPIC;
bool HasCMOV;
bool HasMTRR;
bool HasACPI;
bool HasSerial;
bool HasThermal;
int CPUSpeed;
int L1CacheSize;
int L2CacheSize;
int L3CacheSize;
CPUExtendedFeatures ExtendedFeatures;
} CPUFeatures;
enum Manufacturer
{
AMD, Intel, NSC, UMC, Cyrix, NexGen, IDT, Rise, Transmeta, Sun, UnknownManufacturer
};
protected:
// Functions.
bool RetrieveCPUFeatures();
bool RetrieveCPUIdentity();
bool RetrieveCPUCacheDetails();
bool RetrieveClassicalCPUCacheDetails();
bool RetrieveCPUClockSpeed();
bool RetrieveClassicalCPUClockSpeed();
bool RetrieveCPUExtendedLevelSupport(int);
bool RetrieveExtendedCPUFeatures();
bool RetrieveProcessorSerialNumber();
bool RetrieveCPUPowerManagement();
bool RetrieveClassicalCPUIdentity();
bool RetrieveExtendedCPUIdentity();
Manufacturer ChipManufacturer;
CPUFeatures Features;
ID ChipID;
float CPUSpeedInMHz;
unsigned int NumberOfLogicalCPU;
unsigned int NumberOfPhysicalCPU;
int CPUCount();
unsigned char LogicalCPUPerPhysicalCPU();
unsigned char GetAPICId();
unsigned int IsHyperThreadingSupported();
LongLong GetCyclesDifference(DELAY_FUNC, unsigned int);
// For Linux and Cygwin, /proc/cpuinfo formats are slightly different
int RetreiveInformationFromCpuInfoFile();
kwsys_stl::string ExtractValueFromCpuInfoFile(kwsys_stl::string buffer,
const char* word, size_t init=0);
static void Delay (unsigned int);
static void DelayOverhead (unsigned int);
void FindManufacturer();
// For Mac
bool ParseSysCtl();
kwsys_stl::string ExtractValueFromSysCtl(const char* word);
kwsys_stl::string SysCtlBuffer;
// For Solaris
bool QuerySolarisInfo();
kwsys_stl::string ParseValueFromKStat(const char* arguments);
kwsys_stl::string RunProcess(kwsys_stl::vector<const char*> args);
// Evaluate the memory information.
int QueryMemory();
unsigned long TotalVirtualMemory;
unsigned long AvailableVirtualMemory;
unsigned long TotalPhysicalMemory;
unsigned long AvailablePhysicalMemory;
size_t CurrentPositionInFile;
// Operating System information
bool QueryOSInformation();
kwsys_stl::string OSName;
kwsys_stl::string Hostname;
kwsys_stl::string OSRelease;
kwsys_stl::string OSVersion;
kwsys_stl::string OSPlatform;
};
SystemInformation::SystemInformation()
{
this->Implementation = new SystemInformationImplementation;
}
SystemInformation::~SystemInformation ()
{
delete this->Implementation;
}
const char * SystemInformation::GetVendorString()
{
return this->Implementation->GetVendorString();
}
const char * SystemInformation::GetVendorID()
{
return this->Implementation->GetVendorID();
}
kwsys_stl::string SystemInformation::GetTypeID()
{
return this->Implementation->GetTypeID();
}
kwsys_stl::string SystemInformation::GetFamilyID()
{
return this->Implementation->GetFamilyID();
}
kwsys_stl::string SystemInformation::GetModelID()
{
return this->Implementation->GetModelID();
}
kwsys_stl::string SystemInformation::GetSteppingCode()
{
return this->Implementation->GetSteppingCode();
}
const char * SystemInformation::GetExtendedProcessorName()
{
return this->Implementation->GetExtendedProcessorName();
}
const char * SystemInformation::GetProcessorSerialNumber()
{
return this->Implementation->GetProcessorSerialNumber();
}
int SystemInformation::GetProcessorCacheSize()
{
return this->Implementation->GetProcessorCacheSize();
}
int SystemInformation::GetLogicalProcessorsPerPhysical()
{
return this->Implementation->GetLogicalProcessorsPerPhysical();
}
float SystemInformation::GetProcessorClockFrequency()
{
return this->Implementation->GetProcessorClockFrequency();
}
int SystemInformation::GetProcessorAPICID()
{
return this->Implementation->GetProcessorAPICID();
}
int SystemInformation::GetProcessorCacheXSize(long int l)
{
return this->Implementation->GetProcessorCacheXSize(l);
}
bool SystemInformation::DoesCPUSupportFeature(long int i)
{
return this->Implementation->DoesCPUSupportFeature(i);
}
const char * SystemInformation::GetOSName()
{
return this->Implementation->GetOSName();
}
const char * SystemInformation::GetHostname()
{
return this->Implementation->GetHostname();
}
const char * SystemInformation::GetOSRelease()
{
return this->Implementation->GetOSRelease();
}
const char * SystemInformation::GetOSVersion()
{
return this->Implementation->GetOSVersion();
}
const char * SystemInformation::GetOSPlatform()
{
return this->Implementation->GetOSPlatform();
}
bool SystemInformation::Is64Bits()
{
return this->Implementation->Is64Bits();
}
unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu
{
return this->Implementation->GetNumberOfLogicalCPU();
}
unsigned int SystemInformation::GetNumberOfPhysicalCPU()
{
return this->Implementation->GetNumberOfPhysicalCPU();
}
bool SystemInformation::DoesCPUSupportCPUID()
{
return this->Implementation->DoesCPUSupportCPUID();
}
// Retrieve memory information in megabyte.
unsigned long SystemInformation::GetTotalVirtualMemory()
{
return this->Implementation->GetTotalVirtualMemory();
}
unsigned long SystemInformation::GetAvailableVirtualMemory()
{
return this->Implementation->GetAvailableVirtualMemory();
}
unsigned long SystemInformation::GetTotalPhysicalMemory()
{
return this->Implementation->GetTotalPhysicalMemory();
}
unsigned long SystemInformation::GetAvailablePhysicalMemory()
{
return this->Implementation->GetAvailablePhysicalMemory();
}
/** Run the different checks */
void SystemInformation::RunCPUCheck()
{
this->Implementation->RunCPUCheck();
}
void SystemInformation::RunOSCheck()
{
this->Implementation->RunOSCheck();
}
void SystemInformation::RunMemoryCheck()
{
this->Implementation->RunMemoryCheck();
}
// --------------------------------------------------------------
// SystemInformationImplementation starts here
#if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64)
#define USE_ASM_INSTRUCTIONS 1
#else
#define USE_ASM_INSTRUCTIONS 0
#endif
#define STORE_TLBCACHE_INFO(x,y) x = (x < y) ? y : x
#define TLBCACHE_INFO_UNITS (15)
#define CLASSICAL_CPU_FREQ_LOOP 10000000
#define RDTSC_INSTRUCTION _asm _emit 0x0f _asm _emit 0x31
#define CPUID_AWARE_COMPILER
#ifdef CPUID_AWARE_COMPILER
#define CPUID_INSTRUCTION cpuid
#else
#define CPUID_INSTRUCTION _asm _emit 0x0f _asm _emit 0xa2
#endif
#define MMX_FEATURE 0x00000001
#define MMX_PLUS_FEATURE 0x00000002
#define SSE_FEATURE 0x00000004
#define SSE2_FEATURE 0x00000008
#define AMD_3DNOW_FEATURE 0x00000010
#define AMD_3DNOW_PLUS_FEATURE 0x00000020
#define IA64_FEATURE 0x00000040
#define MP_CAPABLE 0x00000080
#define HYPERTHREAD_FEATURE 0x00000100
#define SERIALNUMBER_FEATURE 0x00000200
#define APIC_FEATURE 0x00000400
#define SSE_FP_FEATURE 0x00000800
#define SSE_MMX_FEATURE 0x00001000
#define CMOV_FEATURE 0x00002000
#define MTRR_FEATURE 0x00004000
#define L1CACHE_FEATURE 0x00008000
#define L2CACHE_FEATURE 0x00010000
#define L3CACHE_FEATURE 0x00020000
#define ACPI_FEATURE 0x00040000
#define THERMALMONITOR_FEATURE 0x00080000
#define TEMPSENSEDIODE_FEATURE 0x00100000
#define FREQUENCYID_FEATURE 0x00200000
#define VOLTAGEID_FREQUENCY 0x00400000
// Status Flag
#define HT_NOT_CAPABLE 0
#define HT_ENABLED 1
#define HT_DISABLED 2
#define HT_SUPPORTED_NOT_ENABLED 3
#define HT_CANNOT_DETECT 4
// EDX[28] Bit 28 is set if HT is supported
#define HT_BIT 0x10000000
// EAX[11:8] Bit 8-11 contains family processor ID.
#define FAMILY_ID 0x0F00
#define PENTIUM4_ID 0x0F00
// EAX[23:20] Bit 20-23 contains extended family processor ID
#define EXT_FAMILY_ID 0x0F00000
// EBX[23:16] Bit 16-23 in ebx contains the number of logical
#define NUM_LOGICAL_BITS 0x00FF0000
// processors per physical processor when execute cpuid with
// eax set to 1
// EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique
#define INITIAL_APIC_ID_BITS 0xFF000000
// initial APIC ID for the processor this code is running on.
// Default value = 0xff if HT is not supported
SystemInformationImplementation::SystemInformationImplementation()
{
this->TotalVirtualMemory = 0;
this->AvailableVirtualMemory = 0;
this->TotalPhysicalMemory = 0;
this->AvailablePhysicalMemory = 0;
this->CurrentPositionInFile = 0;
this->ChipManufacturer = UnknownManufacturer;
memset(&this->Features, 0, sizeof(CPUFeatures));
memset(&this->ChipID, 0, sizeof(ID));
this->CPUSpeedInMHz = 0;
this->NumberOfLogicalCPU = 0;
this->NumberOfPhysicalCPU = 0;
this->OSName = "";
this->Hostname = "";
this->OSRelease = "";
this->OSVersion = "";
this->OSPlatform = "";
}
SystemInformationImplementation::~SystemInformationImplementation()
{
}
void SystemInformationImplementation::RunCPUCheck()
{
#ifdef WIN32
// Check to see if this processor supports CPUID.
if (DoesCPUSupportCPUID())
{
// Retrieve the CPU details.
RetrieveCPUIdentity();
RetrieveCPUFeatures();
if (!RetrieveCPUClockSpeed())
{
RetrieveClassicalCPUClockSpeed();
}
// Attempt to retrieve cache information.
if (!RetrieveCPUCacheDetails())
{
RetrieveClassicalCPUCacheDetails();
}
// Retrieve the extended CPU details.
if (!RetrieveExtendedCPUIdentity())
{
RetrieveClassicalCPUIdentity();
}
RetrieveExtendedCPUFeatures();
// Now attempt to retrieve the serial number (if possible).
RetrieveProcessorSerialNumber();
}
this->CPUCount();
#elif defined(__APPLE__)
this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
this->QuerySolarisInfo();
#else
this->RetreiveInformationFromCpuInfoFile();
#endif
}
void SystemInformationImplementation::RunOSCheck()
{
this->QueryOSInformation();
}
void SystemInformationImplementation::RunMemoryCheck()
{
#if defined(__APPLE__)
this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
this->QuerySolarisInfo();
#else
this->QueryMemory();
#endif
}
/** Get the vendor string */
const char * SystemInformationImplementation::GetVendorString()
{
return this->ChipID.Vendor;
}
/** Get the OS Name */
const char * SystemInformationImplementation::GetOSName()
{
return this->OSName.c_str();
}
/** Get the hostname */
const char* SystemInformationImplementation::GetHostname()
{
return this->Hostname.c_str();
}
/** Get the OS release */
const char* SystemInformationImplementation::GetOSRelease()
{
return this->OSRelease.c_str();
}
/** Get the OS version */
const char* SystemInformationImplementation::GetOSVersion()
{
return this->OSVersion.c_str();
}
/** Get the OS platform */
const char* SystemInformationImplementation::GetOSPlatform()
{
return this->OSPlatform.c_str();
}
/** Get the vendor ID */
const char * SystemInformationImplementation::GetVendorID()
{
// Return the vendor ID.
switch (this->ChipManufacturer)
{
case Intel:
return "Intel Corporation";
case AMD:
return "Advanced Micro Devices";
case NSC:
return "National Semiconductor";
case Cyrix:
return "Cyrix Corp., VIA Inc.";
case NexGen:
return "NexGen Inc., Advanced Micro Devices";
case IDT:
return "IDT\\Centaur, Via Inc.";
case UMC:
return "United Microelectronics Corp.";
case Rise:
return "Rise";
case Transmeta:
return "Transmeta";
case Sun:
return "Sun Microelectronics";
default:
return "Unknown Manufacturer";
}
}
/** Return the type ID of the CPU */
kwsys_stl::string SystemInformationImplementation::GetTypeID()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Type;
return str.str();
}
/** Return the family of the CPU present */
kwsys_stl::string SystemInformationImplementation::GetFamilyID()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Family;
return str.str();
}
// Return the model of CPU present */
kwsys_stl::string SystemInformationImplementation::GetModelID()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Model;
return str.str();
}
/** Return the stepping code of the CPU present. */
kwsys_stl::string SystemInformationImplementation::GetSteppingCode()
{
kwsys_ios::ostringstream str;
str << this->ChipID.Revision;
return str.str();
}
/** Return the stepping code of the CPU present. */
const char * SystemInformationImplementation::GetExtendedProcessorName()
{
return this->ChipID.ProcessorName;
}
/** Return the serial number of the processor
* in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */
const char * SystemInformationImplementation::GetProcessorSerialNumber()
{
return this->ChipID.SerialNumber;
}
/** Return the logical processors per physical */
int SystemInformationImplementation::GetLogicalProcessorsPerPhysical()
{
return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical;
}
/** Return the processor clock frequency. */
float SystemInformationImplementation::GetProcessorClockFrequency()
{
return this->CPUSpeedInMHz;
}
/** Return the APIC ID. */
int SystemInformationImplementation::GetProcessorAPICID()
{
return this->Features.ExtendedFeatures.APIC_ID;
}
/** Return the L1 cache size. */
int SystemInformationImplementation::GetProcessorCacheSize()
{
return this->Features.L1CacheSize;
}
/** Return the chosen cache size. */
int SystemInformationImplementation::GetProcessorCacheXSize(long int dwCacheID)
{
switch (dwCacheID)
{
case L1CACHE_FEATURE:
return this->Features.L1CacheSize;
case L2CACHE_FEATURE:
return this->Features.L2CacheSize;
case L3CACHE_FEATURE:
return this->Features.L3CacheSize;
}
return -1;
}
bool SystemInformationImplementation::DoesCPUSupportFeature(long int dwFeature)
{
bool bHasFeature = false;
// Check for MMX instructions.
if (((dwFeature & MMX_FEATURE) != 0) && this->Features.HasMMX) bHasFeature = true;
// Check for MMX+ instructions.
if (((dwFeature & MMX_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.HasMMXPlus) bHasFeature = true;
// Check for SSE FP instructions.
if (((dwFeature & SSE_FEATURE) != 0) && this->Features.HasSSE) bHasFeature = true;
// Check for SSE FP instructions.
if (((dwFeature & SSE_FP_FEATURE) != 0) && this->Features.HasSSEFP) bHasFeature = true;
// Check for SSE MMX instructions.
if (((dwFeature & SSE_MMX_FEATURE) != 0) && this->Features.ExtendedFeatures.HasSSEMMX) bHasFeature = true;
// Check for SSE2 instructions.
if (((dwFeature & SSE2_FEATURE) != 0) && this->Features.HasSSE2) bHasFeature = true;
// Check for 3DNow! instructions.
if (((dwFeature & AMD_3DNOW_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNow) bHasFeature = true;
// Check for 3DNow+ instructions.
if (((dwFeature & AMD_3DNOW_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNowPlus) bHasFeature = true;
// Check for IA64 instructions.
if (((dwFeature & IA64_FEATURE) != 0) && this->Features.HasIA64) bHasFeature = true;
// Check for MP capable.
if (((dwFeature & MP_CAPABLE) != 0) && this->Features.ExtendedFeatures.SupportsMP) bHasFeature = true;
// Check for a serial number for the processor.
if (((dwFeature & SERIALNUMBER_FEATURE) != 0) && this->Features.HasSerial) bHasFeature = true;
// Check for a local APIC in the processor.
if (((dwFeature & APIC_FEATURE) != 0) && this->Features.HasAPIC) bHasFeature = true;
// Check for CMOV instructions.
if (((dwFeature & CMOV_FEATURE) != 0) && this->Features.HasCMOV) bHasFeature = true;
// Check for MTRR instructions.
if (((dwFeature & MTRR_FEATURE) != 0) && this->Features.HasMTRR) bHasFeature = true;
// Check for L1 cache size.
if (((dwFeature & L1CACHE_FEATURE) != 0) && (this->Features.L1CacheSize != -1)) bHasFeature = true;
// Check for L2 cache size.
if (((dwFeature & L2CACHE_FEATURE) != 0) && (this->Features.L2CacheSize != -1)) bHasFeature = true;
// Check for L3 cache size.
if (((dwFeature & L3CACHE_FEATURE) != 0) && (this->Features.L3CacheSize != -1)) bHasFeature = true;
// Check for ACPI capability.
if (((dwFeature & ACPI_FEATURE) != 0) && this->Features.HasACPI) bHasFeature = true;
// Check for thermal monitor support.
if (((dwFeature & THERMALMONITOR_FEATURE) != 0) && this->Features.HasThermal) bHasFeature = true;
// Check for temperature sensing diode support.
if (((dwFeature & TEMPSENSEDIODE_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode) bHasFeature = true;
// Check for frequency ID support.
if (((dwFeature & FREQUENCYID_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID) bHasFeature = true;
// Check for voltage ID support.
if (((dwFeature & VOLTAGEID_FREQUENCY) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasVoltageID) bHasFeature = true;
return bHasFeature;
}
void SystemInformationImplementation::Delay(unsigned int uiMS)
{
#ifdef WIN32
LARGE_INTEGER Frequency, StartCounter, EndCounter;
__int64 x;
// Get the frequency of the high performance counter.
if (!QueryPerformanceFrequency (&Frequency)) return;
x = Frequency.QuadPart / 1000 * uiMS;
// Get the starting position of the counter.
QueryPerformanceCounter (&StartCounter);
do {
// Get the ending position of the counter.
QueryPerformanceCounter (&EndCounter);
} while (EndCounter.QuadPart - StartCounter.QuadPart < x);
#endif
(void)uiMS;
}
bool SystemInformationImplementation::DoesCPUSupportCPUID()
{
#if USE_ASM_INSTRUCTIONS
// Use SEH to determine CPUID presence
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
mov eax, 0
CPUID_INSTRUCTION
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
// Stop the class from trying to use CPUID again!
return false;
}
// The cpuid instruction succeeded.
return true;
#else
// Assume no cpuid instruction.
return false;
#endif
}
bool SystemInformationImplementation::RetrieveCPUFeatures()
{
#if USE_ASM_INSTRUCTIONS
int localCPUFeatures = 0;
int localCPUAdvanced = 0;
// Use assembly to detect CPUID information...
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
; ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
; edx: CPU feature flags
mov eax,1
CPUID_INSTRUCTION
mov localCPUFeatures, edx
mov localCPUAdvanced, ebx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Retrieve the features of CPU present.
this->Features.HasFPU = ((localCPUFeatures & 0x00000001) != 0); // FPU Present --> Bit 0
this->Features.HasTSC = ((localCPUFeatures & 0x00000010) != 0); // TSC Present --> Bit 4
this->Features.HasAPIC = ((localCPUFeatures & 0x00000200) != 0); // APIC Present --> Bit 9
this->Features.HasMTRR = ((localCPUFeatures & 0x00001000) != 0); // MTRR Present --> Bit 12
this->Features.HasCMOV = ((localCPUFeatures & 0x00008000) != 0); // CMOV Present --> Bit 15
this->Features.HasSerial = ((localCPUFeatures & 0x00040000) != 0); // Serial Present --> Bit 18
this->Features.HasACPI = ((localCPUFeatures & 0x00400000) != 0); // ACPI Capable --> Bit 22
this->Features.HasMMX = ((localCPUFeatures & 0x00800000) != 0); // MMX Present --> Bit 23
this->Features.HasSSE = ((localCPUFeatures & 0x02000000) != 0); // SSE Present --> Bit 25
this->Features.HasSSE2 = ((localCPUFeatures & 0x04000000) != 0); // SSE2 Present --> Bit 26
this->Features.HasThermal = ((localCPUFeatures & 0x20000000) != 0); // Thermal Monitor Present --> Bit 29
this->Features.HasIA64 = ((localCPUFeatures & 0x40000000) != 0); // IA64 Present --> Bit 30
// Retrieve extended SSE capabilities if SSE is available.
if (this->Features.HasSSE) {
// Attempt to __try some SSE FP instructions.
__try
{
// Perform: orps xmm0, xmm0
_asm
{
_emit 0x0f
_emit 0x56
_emit 0xc0
}
// SSE FP capable processor.
this->Features.HasSSEFP = true;
}
__except(1)
{
// bad instruction - processor or OS cannot handle SSE FP.
this->Features.HasSSEFP = false;
}
}
else
{
// Set the advanced SSE capabilities to not available.
this->Features.HasSSEFP = false;
}
// Retrieve Intel specific extended features.
if (this->ChipManufacturer == Intel)
{
this->Features.ExtendedFeatures.SupportsHyperthreading = ((localCPUFeatures & 0x10000000) != 0); // Intel specific: Hyperthreading --> Bit 28
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = (this->Features.ExtendedFeatures.SupportsHyperthreading) ? ((localCPUAdvanced & 0x00FF0000) >> 16) : 1;
if ((this->Features.ExtendedFeatures.SupportsHyperthreading) && (this->Features.HasAPIC))
{
// Retrieve APIC information if there is one present.
this->Features.ExtendedFeatures.APIC_ID = ((localCPUAdvanced & 0xFF000000) >> 24);
}
}
#endif
return true;
}
/** Find the manufacturer given the vendor id */
void SystemInformationImplementation::FindManufacturer()
{
if (strcmp (this->ChipID.Vendor, "GenuineIntel") == 0) this->ChipManufacturer = Intel; // Intel Corp.
else if (strcmp (this->ChipID.Vendor, "UMC UMC UMC ") == 0) this->ChipManufacturer = UMC; // United Microelectronics Corp.
else if (strcmp (this->ChipID.Vendor, "AuthenticAMD") == 0) this->ChipManufacturer = AMD; // Advanced Micro Devices
else if (strcmp (this->ChipID.Vendor, "AMD ISBETTER") == 0) this->ChipManufacturer = AMD; // Advanced Micro Devices (1994)
else if (strcmp (this->ChipID.Vendor, "CyrixInstead") == 0) this->ChipManufacturer = Cyrix; // Cyrix Corp., VIA Inc.
else if (strcmp (this->ChipID.Vendor, "NexGenDriven") == 0) this->ChipManufacturer = NexGen; // NexGen Inc. (now AMD)
else if (strcmp (this->ChipID.Vendor, "CentaurHauls") == 0) this->ChipManufacturer = IDT; // IDT/Centaur (now VIA)
else if (strcmp (this->ChipID.Vendor, "RiseRiseRise") == 0) this->ChipManufacturer = Rise; // Rise
else if (strcmp (this->ChipID.Vendor, "GenuineTMx86") == 0) this->ChipManufacturer = Transmeta; // Transmeta
else if (strcmp (this->ChipID.Vendor, "TransmetaCPU") == 0) this->ChipManufacturer = Transmeta; // Transmeta
else if (strcmp (this->ChipID.Vendor, "Geode By NSC") == 0) this->ChipManufacturer = NSC; // National Semiconductor
else if (strcmp (this->ChipID.Vendor, "Sun") == 0) this->ChipManufacturer = Sun; // Sun Microelectronics
else this->ChipManufacturer = UnknownManufacturer; // Unknown manufacturer
}
/** */
bool SystemInformationImplementation::RetrieveCPUIdentity()
{
#if USE_ASM_INSTRUCTIONS
int localCPUVendor[3];
int localCPUSignature;
// Use assembly to detect CPUID information...
__try
{
_asm
{
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 0 --> eax: maximum value of CPUID instruction.
; ebx: part 1 of 3; CPU signature.
; edx: part 2 of 3; CPU signature.
; ecx: part 3 of 3; CPU signature.
mov eax, 0
CPUID_INSTRUCTION
mov localCPUVendor[0 * TYPE int], ebx
mov localCPUVendor[1 * TYPE int], edx
mov localCPUVendor[2 * TYPE int], ecx
; <<CPUID>>
; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
; ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
; edx: CPU feature flags
mov eax,1
CPUID_INSTRUCTION
mov localCPUSignature, eax
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Process the returned information.
memcpy (this->ChipID.Vendor, &(localCPUVendor[0]), sizeof (int));
memcpy (&(this->ChipID.Vendor[4]), &(localCPUVendor[1]), sizeof (int));
memcpy (&(this->ChipID.Vendor[8]), &(localCPUVendor[2]), sizeof (int));
this->ChipID.Vendor[12] = '\0';
this->FindManufacturer();
// Retrieve the family of CPU present.
this->ChipID.ExtendedFamily = ((localCPUSignature & 0x0FF00000) >> 20); // Bits 27..20 Used
this->ChipID.ExtendedModel = ((localCPUSignature & 0x000F0000) >> 16); // Bits 19..16 Used
this->ChipID.Type = ((localCPUSignature & 0x0000F000) >> 12); // Bits 15..12 Used
this->ChipID.Family = ((localCPUSignature & 0x00000F00) >> 8); // Bits 11..8 Used
this->ChipID.Model = ((localCPUSignature & 0x000000F0) >> 4); // Bits 7..4 Used
this->ChipID.Revision = ((localCPUSignature & 0x0000000F) >> 0); // Bits 3..0 Used
#endif
return true;
}
/** */
bool SystemInformationImplementation::RetrieveCPUCacheDetails()
{
#if USE_ASM_INSTRUCTIONS
int L1Cache[4] = { 0, 0, 0, 0 };
int L2Cache[4] = { 0, 0, 0, 0 };
// Check to see if what we are about to do is supported...
if (RetrieveCPUExtendedLevelSupport (0x80000005))
{
// Use assembly to retrieve the L1 cache information ...
__try
{
_asm
{
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 0x80000005 --> eax: L1 cache information - Part 1 of 4.
; ebx: L1 cache information - Part 2 of 4.
; edx: L1 cache information - Part 3 of 4.
; ecx: L1 cache information - Part 4 of 4.
mov eax, 0x80000005
CPUID_INSTRUCTION
mov L1Cache[0 * TYPE int], eax
mov L1Cache[1 * TYPE int], ebx
mov L1Cache[2 * TYPE int], ecx
mov L1Cache[3 * TYPE int], edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as data cache size from edx: bits 31..24.
this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24);
this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24);
}
else
{
// Store -1 to indicate the cache could not be queried.
this->Features.L1CacheSize = -1;
}
// Check to see if what we are about to do is supported...
if (RetrieveCPUExtendedLevelSupport (0x80000006))
{
// Use assembly to retrieve the L2 cache information ...
__try
{
_asm
{
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 0x80000006 --> eax: L2 cache information - Part 1 of 4.
; ebx: L2 cache information - Part 2 of 4.
; edx: L2 cache information - Part 3 of 4.
; ecx: L2 cache information - Part 4 of 4.
mov eax, 0x80000006
CPUID_INSTRUCTION
mov L2Cache[0 * TYPE int], eax
mov L2Cache[1 * TYPE int], ebx
mov L2Cache[2 * TYPE int], ecx
mov L2Cache[3 * TYPE int], edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Save the L2 unified cache size (in KB) from ecx: bits 31..16.
this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16);
}
else
{
// Store -1 to indicate the cache could not be queried.
this->Features.L2CacheSize = -1;
}
// Define L3 as being not present as we cannot test for it.
this->Features.L3CacheSize = -1;
#endif
// Return failure if we cannot detect either cache with this method.
return ((this->Features.L1CacheSize == -1) && (this->Features.L2CacheSize == -1)) ? false : true;
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails()
{
#if USE_ASM_INSTRUCTIONS
int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1, L2Unified = -1, L3Unified = -1;
int TLBCacheData[4] = { 0, 0, 0, 0 };
int TLBPassCounter = 0;
int TLBCacheUnit = 0;
do {
// Use assembly to retrieve the L2 cache information ...
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 2 --> eax: TLB and cache information - Part 1 of 4.
; ebx: TLB and cache information - Part 2 of 4.
; ecx: TLB and cache information - Part 3 of 4.
; edx: TLB and cache information - Part 4 of 4.
mov eax, 2
CPUID_INSTRUCTION
mov TLBCacheData[0 * TYPE int], eax
mov TLBCacheData[1 * TYPE int], ebx
mov TLBCacheData[2 * TYPE int], ecx
mov TLBCacheData[3 * TYPE int], edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16);
(void)bob;
// Process the returned TLB and cache information.
for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter ++)
{
// First of all - decide which unit we are dealing with.
switch (nCounter)
{
// eax: bits 8..15 : bits 16..23 : bits 24..31
case 0: TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8); break;
case 1: TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16); break;
case 2: TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24); break;
// ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 3: TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0); break;
case 4: TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8); break;
case 5: TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16); break;
case 6: TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24); break;
// ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 7: TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0); break;
case 8: TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8); break;
case 9: TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16); break;
case 10: TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24); break;
// edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
case 11: TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0); break;
case 12: TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8); break;
case 13: TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16); break;
case 14: TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24); break;
// Default case - an error has occured.
default: return false;
}
// Now process the resulting unit to see what it means....
switch (TLBCacheUnit)
{
case 0x00: break;
case 0x01: STORE_TLBCACHE_INFO (TLBCode, 4); break;
case 0x02: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x03: STORE_TLBCACHE_INFO (TLBData, 4); break;
case 0x04: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x06: STORE_TLBCACHE_INFO (L1Code, 8); break;
case 0x08: STORE_TLBCACHE_INFO (L1Code, 16); break;
case 0x0a: STORE_TLBCACHE_INFO (L1Data, 8); break;
case 0x0c: STORE_TLBCACHE_INFO (L1Data, 16); break;
case 0x10: STORE_TLBCACHE_INFO (L1Data, 16); break; // <-- FIXME: IA-64 Only
case 0x15: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only
case 0x1a: STORE_TLBCACHE_INFO (L2Unified, 96); break; // <-- FIXME: IA-64 Only
case 0x22: STORE_TLBCACHE_INFO (L3Unified, 512); break;
case 0x23: STORE_TLBCACHE_INFO (L3Unified, 1024); break;
case 0x25: STORE_TLBCACHE_INFO (L3Unified, 2048); break;
case 0x29: STORE_TLBCACHE_INFO (L3Unified, 4096); break;
case 0x39: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x3c: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x40: STORE_TLBCACHE_INFO (L2Unified, 0); break; // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4 core).
case 0x41: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x42: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x43: STORE_TLBCACHE_INFO (L2Unified, 512); break;
case 0x44: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
case 0x45: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
case 0x50: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x51: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x52: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
case 0x5b: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x5c: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x5d: STORE_TLBCACHE_INFO (TLBData, 4096); break;
case 0x66: STORE_TLBCACHE_INFO (L1Data, 8); break;
case 0x67: STORE_TLBCACHE_INFO (L1Data, 16); break;
case 0x68: STORE_TLBCACHE_INFO (L1Data, 32); break;
case 0x70: STORE_TLBCACHE_INFO (L1Trace, 12); break;
case 0x71: STORE_TLBCACHE_INFO (L1Trace, 16); break;
case 0x72: STORE_TLBCACHE_INFO (L1Trace, 32); break;
case 0x77: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only
case 0x79: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x7a: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x7b: STORE_TLBCACHE_INFO (L2Unified, 512); break;
case 0x7c: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
case 0x7e: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x81: STORE_TLBCACHE_INFO (L2Unified, 128); break;
case 0x82: STORE_TLBCACHE_INFO (L2Unified, 256); break;
case 0x83: STORE_TLBCACHE_INFO (L2Unified, 512); break;
case 0x84: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
case 0x85: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
case 0x88: STORE_TLBCACHE_INFO (L3Unified, 2048); break; // <-- FIXME: IA-64 Only
case 0x89: STORE_TLBCACHE_INFO (L3Unified, 4096); break; // <-- FIXME: IA-64 Only
case 0x8a: STORE_TLBCACHE_INFO (L3Unified, 8192); break; // <-- FIXME: IA-64 Only
case 0x8d: STORE_TLBCACHE_INFO (L3Unified, 3096); break; // <-- FIXME: IA-64 Only
case 0x90: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only
case 0x96: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only
case 0x9b: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only
// Default case - an error has occured.
default: return false;
}
}
// Increment the TLB pass counter.
TLBPassCounter ++;
} while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter);
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1))
{
this->Features.L1CacheSize = -1;
}
else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1))
{
this->Features.L1CacheSize = L1Trace;
}
else if ((L1Code != -1) && (L1Data == -1))
{
this->Features.L1CacheSize = L1Code;
}
else if ((L1Code == -1) && (L1Data != -1))
{
this->Features.L1CacheSize = L1Data;
}
else if ((L1Code != -1) && (L1Data != -1))
{
this->Features.L1CacheSize = L1Code + L1Data;
}
else
{
this->Features.L1CacheSize = -1;
}
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if (L2Unified == -1)
{
this->Features.L2CacheSize = -1;
}
else
{
this->Features.L2CacheSize = L2Unified;
}
// Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
if (L3Unified == -1)
{
this->Features.L3CacheSize = -1;
}
else
{
this->Features.L3CacheSize = L3Unified;
}
#endif
return true;
}
/** */
bool SystemInformationImplementation::RetrieveCPUClockSpeed()
{
#if _WIN32
// First of all we check to see if the RDTSC (0x0F, 0x31) instruction is supported.
if (!this->Features.HasTSC)
{
return false;
}
unsigned int uiRepetitions = 1;
unsigned int uiMSecPerRepetition = 50;
__int64 i64Total = 0;
__int64 i64Overhead = 0;
for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter ++)
{
i64Total += GetCyclesDifference (SystemInformationImplementation::Delay,
uiMSecPerRepetition);
i64Overhead +=
GetCyclesDifference (SystemInformationImplementation::DelayOverhead,
uiMSecPerRepetition);
}
// Calculate the MHz speed.
i64Total -= i64Overhead;
i64Total /= uiRepetitions;
i64Total /= uiMSecPerRepetition;
i64Total /= 1000;
// Save the CPU speed.
this->CPUSpeedInMHz = (float) i64Total;
return true;
#else
return false;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed()
{
#if USE_ASM_INSTRUCTIONS
LARGE_INTEGER liStart, liEnd, liCountsPerSecond;
double dFrequency, dDifference;
// Attempt to get a starting tick count.
QueryPerformanceCounter (&liStart);
__try
{
_asm
{
mov eax, 0x80000000
mov ebx, CLASSICAL_CPU_FREQ_LOOP
Timer_Loop:
bsf ecx,eax
dec ebx
jnz Timer_Loop
}
}
__except(1)
{
return false;
}
// Attempt to get a starting tick count.
QueryPerformanceCounter (&liEnd);
// Get the difference... NB: This is in seconds....
QueryPerformanceFrequency (&liCountsPerSecond);
dDifference = (((double) liEnd.QuadPart - (double) liStart.QuadPart) / (double) liCountsPerSecond.QuadPart);
// Calculate the clock speed.
if (this->ChipID.Family == 3)
{
// 80386 processors.... Loop time is 115 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1048576);
}
else if (this->ChipID.Family == 4)
{
// 80486 processors.... Loop time is 47 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1048576);
}
else if (this->ChipID.Family == 5)
{
// Pentium processors.... Loop time is 43 cycles!
dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1048576);
}
// Save the clock speed.
this->Features.CPUSpeed = (int) dFrequency;
#else
return true;
#endif
}
/** */
bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(int CPULevelToCheck)
{
int MaxCPUExtendedLevel = 0;
// The extended CPUID is supported by various vendors starting with the following CPU models:
//
// Manufacturer & Chip Name | Family Model Revision
//
// AMD K6, K6-2 | 5 6 x
// Cyrix GXm, Cyrix III "Joshua" | 5 4 x
// IDT C6-2 | 5 8 x
// VIA Cyrix III | 6 5 x
// Transmeta Crusoe | 5 x x
// Intel Pentium 4 | f x x
//
// We check to see if a supported processor is present...
if (this->ChipManufacturer == AMD)
{
if (this->ChipID.Family < 5) return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6)) return false;
}
else if (this->ChipManufacturer == Cyrix)
{
if (this->ChipID.Family < 5) return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4)) return false;
if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5)) return false;
}
else if (this->ChipManufacturer == IDT)
{
if (this->ChipID.Family < 5) return false;
if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8)) return false;
}
else if (this->ChipManufacturer == Transmeta)
{
if (this->ChipID.Family < 5) return false;
}
else if (this->ChipManufacturer == Intel)
{
if (this->ChipID.Family < 0xf)
{
return false;
}
}
#if USE_ASM_INSTRUCTIONS
// Use assembly to detect CPUID information...
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 0x80000000 --> eax: maximum supported extended level
mov eax,0x80000000
CPUID_INSTRUCTION
mov MaxCPUExtendedLevel, eax
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
#endif
// Now we have to check the level wanted vs level returned...
int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF);
int nLevelReturn = (MaxCPUExtendedLevel & 0x7FFFFFFF);
// Check to see if the level provided is supported...
if (nLevelWanted > nLevelReturn)
{
return false;
}
return true;
}
/** */
bool SystemInformationImplementation::RetrieveExtendedCPUFeatures()
{
// Check that we are not using an Intel processor as it does not support this.
if (this->ChipManufacturer == Intel)
{
return false;
}
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport (0x80000001))
{
return false;
}
#if USE_ASM_INSTRUCTIONS
int localCPUExtendedFeatures = 0;
// Use assembly to detect CPUID information...
__try
{
_asm
{
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 0x80000001 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
; ebx: 31..24 - default APIC ID, 23..16 - logical processsor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
; edx: CPU feature flags
mov eax,0x80000001
CPUID_INSTRUCTION
mov localCPUExtendedFeatures, edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Retrieve the extended features of CPU present.
this->Features.ExtendedFeatures.Has3DNow = ((localCPUExtendedFeatures & 0x80000000) != 0); // 3DNow Present --> Bit 31.
this->Features.ExtendedFeatures.Has3DNowPlus = ((localCPUExtendedFeatures & 0x40000000) != 0); // 3DNow+ Present -- > Bit 30.
this->Features.ExtendedFeatures.HasSSEMMX = ((localCPUExtendedFeatures & 0x00400000) != 0); // SSE MMX Present --> Bit 22.
this->Features.ExtendedFeatures.SupportsMP = ((localCPUExtendedFeatures & 0x00080000) != 0); // MP Capable -- > Bit 19.
// Retrieve AMD specific extended features.
if (this->ChipManufacturer == AMD)
{
this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures & 0x00400000) != 0); // AMD specific: MMX-SSE --> Bit 22
}
// Retrieve Cyrix specific extended features.
if (this->ChipManufacturer == Cyrix)
{
this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures & 0x01000000) != 0); // Cyrix specific: Extended MMX --> Bit 24
}
#endif
return true;
}
/** */
bool SystemInformationImplementation::RetrieveProcessorSerialNumber()
{
// Check to see if the processor supports the processor serial number.
if (!this->Features.HasSerial)
{
return false;
}
#if USE_ASM_INSTRUCTIONS
int SerialNumber[3];
// Use assembly to detect CPUID information...
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB: Transmeta only ?!?
; ecx: middle 32 bits are the processor signature bits
; edx: bottom 32 bits are the processor signature bits
mov eax, 3
CPUID_INSTRUCTION
mov SerialNumber[0 * TYPE int], ebx
mov SerialNumber[1 * TYPE int], ecx
mov SerialNumber[2 * TYPE int], edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Process the returned information.
sprintf (this->ChipID.SerialNumber, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x",
((SerialNumber[0] & 0xff000000) >> 24),
((SerialNumber[0] & 0x00ff0000) >> 16),
((SerialNumber[0] & 0x0000ff00) >> 8),
((SerialNumber[0] & 0x000000ff) >> 0),
((SerialNumber[1] & 0xff000000) >> 24),
((SerialNumber[1] & 0x00ff0000) >> 16),
((SerialNumber[1] & 0x0000ff00) >> 8),
((SerialNumber[1] & 0x000000ff) >> 0),
((SerialNumber[2] & 0xff000000) >> 24),
((SerialNumber[2] & 0x00ff0000) >> 16),
((SerialNumber[2] & 0x0000ff00) >> 8),
((SerialNumber[2] & 0x000000ff) >> 0));
#endif
return true;
}
/** */
bool SystemInformationImplementation::RetrieveCPUPowerManagement()
{
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport (0x80000007))
{
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false;
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false;
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false;
return false;
}
#if USE_ASM_INSTRUCTIONS
int localCPUPowerManagement = 0;
// Use assembly to detect CPUID information...
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 0x80000007 --> edx: get processor power management
mov eax,0x80000007
CPUID_INSTRUCTION
mov localCPUPowerManagement, edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Check for the power management capabilities of the CPU.
this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = ((localCPUPowerManagement & 0x00000001) != 0);
this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = ((localCPUPowerManagement & 0x00000002) != 0);
this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = ((localCPUPowerManagement & 0x00000004) != 0);
#endif
return true;
}
/** */
bool SystemInformationImplementation::RetrieveExtendedCPUIdentity()
{
// Check to see if what we are about to do is supported...
if (!RetrieveCPUExtendedLevelSupport(0x80000002)) return false;
if (!RetrieveCPUExtendedLevelSupport(0x80000003)) return false;
if (!RetrieveCPUExtendedLevelSupport(0x80000004)) return false;
#if USE_ASM_INSTRUCTIONS
int ProcessorNameStartPos = 0;
int CPUExtendedIdentity[12];
// Use assembly to detect CPUID information...
__try {
_asm {
#ifdef CPUID_AWARE_COMPILER
; we must push/pop the registers <<CPUID>> writes to, as the
; optimiser doesn't know about <<CPUID>>, and so doesn't expect
; these registers to change.
push eax
push ebx
push ecx
push edx
#endif
; <<CPUID>>
; eax = 0x80000002 --> eax, ebx, ecx, edx: get processor name string (part 1)
mov eax,0x80000002
CPUID_INSTRUCTION
mov CPUExtendedIdentity[0 * TYPE int], eax
mov CPUExtendedIdentity[1 * TYPE int], ebx
mov CPUExtendedIdentity[2 * TYPE int], ecx
mov CPUExtendedIdentity[3 * TYPE int], edx
; <<CPUID>>
; eax = 0x80000003 --> eax, ebx, ecx, edx: get processor name string (part 2)
mov eax,0x80000003
CPUID_INSTRUCTION
mov CPUExtendedIdentity[4 * TYPE int], eax
mov CPUExtendedIdentity[5 * TYPE int], ebx
mov CPUExtendedIdentity[6 * TYPE int], ecx
mov CPUExtendedIdentity[7 * TYPE int], edx
; <<CPUID>>
; eax = 0x80000004 --> eax, ebx, ecx, edx: get processor name string (part 3)
mov eax,0x80000004
CPUID_INSTRUCTION
mov CPUExtendedIdentity[8 * TYPE int], eax
mov CPUExtendedIdentity[9 * TYPE int], ebx
mov CPUExtendedIdentity[10 * TYPE int], ecx
mov CPUExtendedIdentity[11 * TYPE int], edx
#ifdef CPUID_AWARE_COMPILER
pop edx
pop ecx
pop ebx
pop eax
#endif
}
}
__except(1)
{
return false;
}
// Process the returned information.
memcpy (this->ChipID.ProcessorName, &(CPUExtendedIdentity[0]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[4]), &(CPUExtendedIdentity[1]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[8]), &(CPUExtendedIdentity[2]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[12]), &(CPUExtendedIdentity[3]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[16]), &(CPUExtendedIdentity[4]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[20]), &(CPUExtendedIdentity[5]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[24]), &(CPUExtendedIdentity[6]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[28]), &(CPUExtendedIdentity[7]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[32]), &(CPUExtendedIdentity[8]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[36]), &(CPUExtendedIdentity[9]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[40]), &(CPUExtendedIdentity[10]), sizeof (int));
memcpy (&(this->ChipID.ProcessorName[44]), &(CPUExtendedIdentity[11]), sizeof (int));
this->ChipID.ProcessorName[48] = '\0';
// Because some manufacturers have leading white space - we have to post-process the name.
if (this->ChipManufacturer == Intel)
{
for (int nCounter = 0; nCounter < CHIPNAME_STRING_LENGTH; nCounter ++)
{
// There will either be NULL (\0) or spaces ( ) as the leading characters.
if ((this->ChipID.ProcessorName[nCounter] != '\0') && (this->ChipID.ProcessorName[nCounter] != ' '))
{
// We have found the starting position of the name.
ProcessorNameStartPos = nCounter;
// Terminate the loop.
break;
}
}
// Check to see if there is any white space at the start.
if (ProcessorNameStartPos == 0)
{
return true;
}
// Now move the name forward so that there is no white space.
memmove(this->ChipID.ProcessorName, &(this->ChipID.ProcessorName[ProcessorNameStartPos]), (CHIPNAME_STRING_LENGTH - ProcessorNameStartPos));
}
#endif
return true;
}
/** */
bool SystemInformationImplementation::RetrieveClassicalCPUIdentity()
{
// Start by decided which manufacturer we are using....
switch (this->ChipManufacturer)
{
case Intel:
// Check the family / model / revision to determine the CPU ID.
switch (this->ChipID.Family) {
case 3:
sprintf (this->ChipID.ProcessorName, "Newer i80386 family");
break;
case 4:
switch (this->ChipID.Model) {
case 0: sprintf (this->ChipID.ProcessorName,"i80486DX-25/33"); break;
case 1: sprintf (this->ChipID.ProcessorName,"i80486DX-50"); break;
case 2: sprintf (this->ChipID.ProcessorName,"i80486SX"); break;
case 3: sprintf (this->ChipID.ProcessorName,"i80486DX2"); break;
case 4: sprintf (this->ChipID.ProcessorName,"i80486SL"); break;
case 5: sprintf (this->ChipID.ProcessorName,"i80486SX2"); break;
case 7: sprintf (this->ChipID.ProcessorName,"i80486DX2 WriteBack"); break;
case 8: sprintf (this->ChipID.ProcessorName,"i80486DX4"); break;
case 9: sprintf (this->ChipID.ProcessorName,"i80486DX4 WriteBack"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown 80486 family"); return false;
}
break;
case 5:
switch (this->ChipID.Model)
{
case 0: sprintf (this->ChipID.ProcessorName,"P5 A-Step"); break;
case 1: sprintf (this->ChipID.ProcessorName,"P5"); break;
case 2: sprintf (this->ChipID.ProcessorName,"P54C"); break;
case 3: sprintf (this->ChipID.ProcessorName,"P24T OverDrive"); break;
case 4: sprintf (this->ChipID.ProcessorName,"P55C"); break;
case 7: sprintf (this->ChipID.ProcessorName,"P54C"); break;
case 8: sprintf (this->ChipID.ProcessorName,"P55C (0.25micron)"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown Pentium family"); return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 0: sprintf (this->ChipID.ProcessorName,"P6 A-Step"); break;
case 1: sprintf (this->ChipID.ProcessorName,"P6"); break;
case 3: sprintf (this->ChipID.ProcessorName,"Pentium II (0.28 micron)"); break;
case 5: sprintf (this->ChipID.ProcessorName,"Pentium II (0.25 micron)"); break;
case 6: sprintf (this->ChipID.ProcessorName,"Pentium II With On-Die L2 Cache"); break;
case 7: sprintf (this->ChipID.ProcessorName,"Pentium III (0.25 micron)"); break;
case 8: sprintf (this->ChipID.ProcessorName,"Pentium III (0.18 micron) With 256 KB On-Die L2 Cache "); break;
case 0xa: sprintf (this->ChipID.ProcessorName,"Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache "); break;
case 0xb: sprintf (this->ChipID.ProcessorName,"Pentium III (0.13 micron) With 256 Or 512 KB On-Die L2 Cache "); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown P6 family"); return false;
}
break;
case 7:
sprintf (this->ChipID.ProcessorName,"Intel Merced (IA-64)");
break;
case 0xf:
// Check the extended family bits...
switch (this->ChipID.ExtendedFamily)
{
case 0:
switch (this->ChipID.Model)
{
case 0: sprintf (this->ChipID.ProcessorName,"Pentium IV (0.18 micron)"); break;
case 1: sprintf (this->ChipID.ProcessorName,"Pentium IV (0.18 micron)"); break;
case 2: sprintf (this->ChipID.ProcessorName,"Pentium IV (0.13 micron)"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown Pentium 4 family"); return false;
}
break;
case 1:
sprintf (this->ChipID.ProcessorName,"Intel McKinley (IA-64)");
break;
default:
sprintf (this->ChipID.ProcessorName,"Pentium");
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown Intel family");
return false;
}
break;
case AMD:
// Check the family / model / revision to determine the CPU ID.
switch (this->ChipID.Family)
{
case 4:
switch (this->ChipID.Model)
{
case 3: sprintf (this->ChipID.ProcessorName,"80486DX2"); break;
case 7: sprintf (this->ChipID.ProcessorName,"80486DX2 WriteBack"); break;
case 8: sprintf (this->ChipID.ProcessorName,"80486DX4"); break;
case 9: sprintf (this->ChipID.ProcessorName,"80486DX4 WriteBack"); break;
case 0xe: sprintf (this->ChipID.ProcessorName,"5x86"); break;
case 0xf: sprintf (this->ChipID.ProcessorName,"5x86WB"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown 80486 family"); return false;
}
break;
case 5:
switch (this->ChipID.Model)
{
case 0: sprintf (this->ChipID.ProcessorName,"SSA5 (PR75, PR90, PR100)"); break;
case 1: sprintf (this->ChipID.ProcessorName,"5k86 (PR120, PR133)"); break;
case 2: sprintf (this->ChipID.ProcessorName,"5k86 (PR166)"); break;
case 3: sprintf (this->ChipID.ProcessorName,"5k86 (PR200)"); break;
case 6: sprintf (this->ChipID.ProcessorName,"K6 (0.30 micron)"); break;
case 7: sprintf (this->ChipID.ProcessorName,"K6 (0.25 micron)"); break;
case 8: sprintf (this->ChipID.ProcessorName,"K6-2"); break;
case 9: sprintf (this->ChipID.ProcessorName,"K6-III"); break;
case 0xd: sprintf (this->ChipID.ProcessorName,"K6-2+ or K6-III+ (0.18 micron)"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown 80586 family"); return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 1: sprintf (this->ChipID.ProcessorName,"Athlon- (0.25 micron)"); break;
case 2: sprintf (this->ChipID.ProcessorName,"Athlon- (0.18 micron)"); break;
case 3: sprintf (this->ChipID.ProcessorName,"Duron- (SF core)"); break;
case 4: sprintf (this->ChipID.ProcessorName,"Athlon- (Thunderbird core)"); break;
case 6: sprintf (this->ChipID.ProcessorName,"Athlon- (Palomino core)"); break;
case 7: sprintf (this->ChipID.ProcessorName,"Duron- (Morgan core)"); break;
case 8:
if (this->Features.ExtendedFeatures.SupportsMP)
sprintf (this->ChipID.ProcessorName,"Athlon - MP (Thoroughbred core)");
else sprintf (this->ChipID.ProcessorName,"Athlon - XP (Thoroughbred core)");
break;
default: sprintf (this->ChipID.ProcessorName,"Unknown K7 family"); return false;
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown AMD family");
return false;
}
break;
case Transmeta:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 4: sprintf (this->ChipID.ProcessorName,"Crusoe TM3x00 and TM5x00"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown Crusoe family"); return false;
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown Transmeta family");
return false;
}
break;
case Rise:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 0: sprintf (this->ChipID.ProcessorName,"mP6 (0.25 micron)"); break;
case 2: sprintf (this->ChipID.ProcessorName,"mP6 (0.18 micron)"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown Rise family"); return false;
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown Rise family");
return false;
}
break;
case UMC:
switch (this->ChipID.Family)
{
case 4:
switch (this->ChipID.Model)
{
case 1: sprintf (this->ChipID.ProcessorName,"U5D"); break;
case 2: sprintf (this->ChipID.ProcessorName,"U5S"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown UMC family"); return false;
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown UMC family");
return false;
}
break;
case IDT:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 4: sprintf (this->ChipID.ProcessorName,"C6"); break;
case 8: sprintf (this->ChipID.ProcessorName,"C2"); break;
case 9: sprintf (this->ChipID.ProcessorName,"C3"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown IDT\\Centaur family"); return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 6: sprintf (this->ChipID.ProcessorName,"VIA Cyrix III - Samuel"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown IDT\\Centaur family"); return false;
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown IDT\\Centaur family");
return false;
}
break;
case Cyrix:
switch (this->ChipID.Family)
{
case 4:
switch (this->ChipID.Model)
{
case 4: sprintf (this->ChipID.ProcessorName,"MediaGX GX, GXm"); break;
case 9: sprintf (this->ChipID.ProcessorName,"5x86"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown Cx5x86 family"); return false;
}
break;
case 5:
switch (this->ChipID.Model)
{
case 2: sprintf (this->ChipID.ProcessorName,"Cx6x86"); break;
case 4: sprintf (this->ChipID.ProcessorName,"MediaGX GXm"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown Cx6x86 family"); return false;
}
break;
case 6:
switch (this->ChipID.Model)
{
case 0: sprintf (this->ChipID.ProcessorName,"6x86MX"); break;
case 5: sprintf (this->ChipID.ProcessorName,"Cyrix M2 Core"); break;
case 6: sprintf (this->ChipID.ProcessorName,"WinChip C5A Core"); break;
case 7: sprintf (this->ChipID.ProcessorName,"WinChip C5B\\C5C Core"); break;
case 8: sprintf (this->ChipID.ProcessorName,"WinChip C5C-T Core"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown 6x86MX\\Cyrix III family"); return false;
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown Cyrix family");
return false;
}
break;
case NexGen:
switch (this->ChipID.Family)
{
case 5:
switch (this->ChipID.Model)
{
case 0: sprintf (this->ChipID.ProcessorName,"Nx586 or Nx586FPU"); break;
default: sprintf (this->ChipID.ProcessorName,"Unknown NexGen family"); return false;
}
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown NexGen family");
return false;
}
break;
case NSC:
sprintf (this->ChipID.ProcessorName,"Cx486SLC \\ DLC \\ Cx486S A-Step");
break;
default:
sprintf (this->ChipID.ProcessorName,"Unknown family"); // We cannot identify the processor.
return false;
}
return true;
}
/** Extract a value from the CPUInfo file */
kwsys_stl::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(kwsys_stl::string buffer,const char* word,size_t init)
{
size_t pos = buffer.find(word,init);
if(pos != buffer.npos)
{
this->CurrentPositionInFile = pos;
pos = buffer.find(":",pos);
size_t pos2 = buffer.find("\n",pos);
if(pos!=buffer.npos && pos2!=buffer.npos)
{
return buffer.substr(pos+2,pos2-pos-2);
}
}
this->CurrentPositionInFile = buffer.npos;
return "";
}
/** Query for the cpu status */
int SystemInformationImplementation::RetreiveInformationFromCpuInfoFile()
{
this->NumberOfLogicalCPU = 0;
this->NumberOfPhysicalCPU = 0;
kwsys_stl::string buffer;
FILE *fd = fopen("/proc/cpuinfo", "r" );
if ( !fd )
{
kwsys_ios::cout << "Problem opening /proc/cpuinfo" << kwsys_stl::endl;
return 0;
}
size_t fileSize = 0;
while(!feof(fd))
{
buffer += fgetc(fd);
fileSize++;
}
fclose( fd );
buffer.resize(fileSize-2);
// Number of logical CPUs (combination of multiple processors, multi-core
// and hyperthreading)
size_t pos = buffer.find("processor\t");
while(pos != buffer.npos)
{
this->NumberOfLogicalCPU++;
pos = buffer.find("processor\t",pos+1);
}
#ifdef __linux
// Find the largest physical id.
int maxId = -1;
kwsys_stl::string idc =
this->ExtractValueFromCpuInfoFile(buffer,"physical id");
while(this->CurrentPositionInFile != buffer.npos)
{
int id = atoi(idc.c_str());
if(id > maxId)
{
maxId=id;
}
idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id",
this->CurrentPositionInFile+1);
}
// Physical ids returned by Linux don't distinguish cores.
// We want to record the total number of cores in this->NumberOfPhysicalCPU
// (checking only the first proc)
kwsys_stl::string cores =
this->ExtractValueFromCpuInfoFile(buffer,"cpu cores");
int numberOfCoresPerCPU=atoi(cores.c_str());
this->NumberOfPhysicalCPU=numberOfCoresPerCPU*(maxId+1);
#else // __CYGWIN__
// does not have "physical id" entries, neither "cpu cores"
// this has to be fixed for hyper-threading.
kwsys_stl::string cpucount =
this->ExtractValueFromCpuInfoFile(buffer,"cpu count");
this->NumberOfPhysicalCPU=
this->NumberOfLogicalCPU = atoi(cpucount.c_str());
#endif
// gotta have one, and if this is 0 then we get a / by 0n
// beter to have a bad answer than a crash
if(this->NumberOfPhysicalCPU <= 0)
{
this->NumberOfPhysicalCPU = 1;
}
// LogicalProcessorsPerPhysical>1 => hyperthreading.
this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical=
this->NumberOfLogicalCPU/this->NumberOfPhysicalCPU;
// CPU speed (checking only the first proc
kwsys_stl::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"cpu MHz");
this->CPUSpeedInMHz = static_cast<float>(atof(CPUSpeed.c_str()));
// Chip family
this->ChipID.Family = atoi(this->ExtractValueFromCpuInfoFile(buffer,"cpu family").c_str());
// Chip Vendor
strcpy(this->ChipID.Vendor,this->ExtractValueFromCpuInfoFile(buffer,"vendor_id").c_str());
this->FindManufacturer();
// Chip Model
this->ChipID.Model = atoi(this->ExtractValueFromCpuInfoFile(buffer,"model").c_str());
this->RetrieveClassicalCPUIdentity();
// L1 Cache size
kwsys_stl::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer,"cache size");
pos = cacheSize.find(" KB");
if(pos!=cacheSize.npos)
{
cacheSize = cacheSize.substr(0,pos);
}
this->Features.L1CacheSize = atoi(cacheSize.c_str());
return 1;
}
/** Query for the memory status */
int SystemInformationImplementation::QueryMemory()
{
this->TotalVirtualMemory = 0;
this->TotalPhysicalMemory = 0;
this->AvailableVirtualMemory = 0;
this->AvailablePhysicalMemory = 0;
#ifdef __CYGWIN__
return 0;
#elif _WIN32
#if _MSC_VER < 1300
MEMORYSTATUS ms;
GlobalMemoryStatus(&ms);
#define MEM_VAL(value) dw##value
#else
MEMORYSTATUSEX ms;
GlobalMemoryStatusEx(&ms);
#define MEM_VAL(value) ull##value
#endif
unsigned long tv = ms.MEM_VAL(TotalVirtual);
unsigned long tp = ms.MEM_VAL(TotalPhys);
unsigned long av = ms.MEM_VAL(AvailVirtual);
unsigned long ap = ms.MEM_VAL(AvailPhys);
this->TotalVirtualMemory = tv>>10>>10;
this->TotalPhysicalMemory = tp>>10>>10;
this->AvailableVirtualMemory = av>>10>>10;
this->AvailablePhysicalMemory = ap>>10>>10;
return 1;
#elif __linux
unsigned long tv=0;
unsigned long tp=0;
unsigned long av=0;
unsigned long ap=0;
char buffer[1024]; // for skipping unused lines
int linuxMajor = 0;
int linuxMinor = 0;
// Find the Linux kernel version first
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if( errorFlag!=0 )
{
kwsys_ios::cout << "Problem calling uname(): " << strerror(errno) << kwsys_stl::endl;
return 0;
}
if( unameInfo.release!=0 && strlen(unameInfo.release)>=3 )
{
// release looks like "2.6.3-15mdk-i686-up-4GB"
char majorChar=unameInfo.release[0];
char minorChar=unameInfo.release[2];
if( isdigit(majorChar) )
{
linuxMajor=majorChar-'0';
}
if( isdigit(minorChar) )
{
linuxMinor=minorChar-'0';
}
}
FILE *fd = fopen("/proc/meminfo", "r" );
if ( !fd )
{
kwsys_ios::cout << "Problem opening /proc/meminfo" << kwsys_stl::endl;
return 0;
}
if( linuxMajor>=3 || ( (linuxMajor>=2) && (linuxMinor>=6) ) )
{
// new /proc/meminfo format since kernel 2.6.x
// Rigorously, this test should check from the developping version 2.5.x
// that introduced the new format...
long freeMem;
long buffersMem;
long cachedMem;
fscanf(fd,"MemTotal:%ld kB\n", &this->TotalPhysicalMemory);
fscanf(fd,"MemFree:%ld kB\n", &freeMem);
fscanf(fd,"Buffers:%ld kB\n", &buffersMem);
fscanf(fd,"Cached:%ld kB\n", &cachedMem);
this->TotalPhysicalMemory /= 1024;
this->AvailablePhysicalMemory = freeMem+cachedMem+buffersMem;
this->AvailablePhysicalMemory /= 1024;
// Skip SwapCached, Active, Inactive, HighTotal, HighFree, LowTotal
// and LowFree.
int i=0;
while(i<7)
{
fgets(buffer, sizeof(buffer), fd); // skip a line
++i;
}
fscanf(fd,"SwapTotal:%ld kB\n", &this->TotalVirtualMemory);
fscanf(fd,"SwapFree:%ld kB\n", &this->AvailableVirtualMemory);
this->TotalVirtualMemory /= 1024;
this->AvailableVirtualMemory /= 1024;
}
else
{
// /proc/meminfo format for kernel older than 2.6.x
unsigned long temp;
unsigned long cachedMem;
unsigned long buffersMem;
fgets(buffer, sizeof(buffer), fd); // Skip "total: used:..."
fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n",
&tp, &temp, &ap, &temp, &buffersMem, &cachedMem);
fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av);
this->TotalVirtualMemory = tv>>10>>10;
this->TotalPhysicalMemory = tp>>10>>10;
this->AvailableVirtualMemory = av>>10>>10;
this->AvailablePhysicalMemory = (ap+buffersMem+cachedMem)>>10>>10;
}
fclose( fd );
return 1;
#elif __hpux
unsigned long tv=0;
unsigned long tp=0;
unsigned long av=0;
unsigned long ap=0;
struct pst_static pst;
struct pst_dynamic pdy;
unsigned long ps = 0;
if (pstat_getstatic(&pst, sizeof(pst), (size_t) 1, 0) != -1)
{
ps = pst.page_size;
tp = pst.physical_memory *ps;
tv = (pst.physical_memory + pst.pst_maxmem) * ps;
if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t) 1, 0) != -1)
{
ap = tp - pdy.psd_rm * ps;
av = tv - pdy.psd_vm;
this->TotalVirtualMemory = tv>>10>>10;
this->TotalPhysicalMemory = tp>>10>>10;
this->AvailableVirtualMemory = av>>10>>10;
this->AvailablePhysicalMemory = ap>>10>>10;
return 1;
}
}
return 0;
#else
return 0;
#endif
}
/** */
unsigned long SystemInformationImplementation::GetTotalVirtualMemory()
{
return this->TotalVirtualMemory;
}
/** */
unsigned long SystemInformationImplementation::GetAvailableVirtualMemory()
{
return this->AvailableVirtualMemory;
}
unsigned long SystemInformationImplementation::GetTotalPhysicalMemory()
{
return this->TotalPhysicalMemory;
}
/** */
unsigned long SystemInformationImplementation::GetAvailablePhysicalMemory()
{
return this->AvailablePhysicalMemory;
}
/** Get Cycle differences */
LongLong SystemInformationImplementation::GetCyclesDifference (DELAY_FUNC DelayFunction,
unsigned int uiParameter)
{
#if USE_ASM_INSTRUCTIONS
unsigned int edx1, eax1;
unsigned int edx2, eax2;
// Calculate the frequency of the CPU instructions.
__try {
_asm {
push uiParameter ; push parameter param
mov ebx, DelayFunction ; store func in ebx
RDTSC_INSTRUCTION
mov esi, eax ; esi = eax
mov edi, edx ; edi = edx
call ebx ; call the delay functions
RDTSC_INSTRUCTION
pop ebx
mov edx2, edx ; edx2 = edx
mov eax2, eax ; eax2 = eax
mov edx1, edi ; edx2 = edi
mov eax1, esi ; eax2 = esi
}
}
__except(1)
{
return -1;
}
return ((((__int64) edx2 << 32) + eax2) - (((__int64) edx1 << 32) + eax1));
#else
(void)DelayFunction;
(void)uiParameter;
return -1;
#endif
}
/** Compute the delay overhead */
void SystemInformationImplementation::DelayOverhead(unsigned int uiMS)
{
#if _WIN32
LARGE_INTEGER Frequency, StartCounter, EndCounter;
__int64 x;
// Get the frequency of the high performance counter.
if(!QueryPerformanceFrequency (&Frequency))
{
return;
}
x = Frequency.QuadPart / 1000 * uiMS;
// Get the starting position of the counter.
QueryPerformanceCounter (&StartCounter);
do {
// Get the ending position of the counter.
QueryPerformanceCounter (&EndCounter);
} while (EndCounter.QuadPart - StartCounter.QuadPart == x);
#endif
(void)uiMS;
}
/** Return the number of logical CPU per physical CPUs Works only for windows */
unsigned char SystemInformationImplementation::LogicalCPUPerPhysicalCPU(void)
{
unsigned int Regebx = 0;
#if USE_ASM_INSTRUCTIONS
if (!this->IsHyperThreadingSupported())
{
return (unsigned char) 1; // HT not supported
}
__asm
{
mov eax, 1
cpuid
mov Regebx, ebx
}
#endif
return (unsigned char) ((Regebx & NUM_LOGICAL_BITS) >> 16);
}
/** Works only for windows */
unsigned int SystemInformationImplementation::IsHyperThreadingSupported()
{
#if USE_ASM_INSTRUCTIONS
unsigned int Regedx = 0,
Regeax = 0,
VendorId[3] = {0, 0, 0};
__try // Verify cpuid instruction is supported
{
__asm
{
xor eax, eax // call cpuid with eax = 0
cpuid // Get vendor id string
mov VendorId, ebx
mov VendorId + 4, edx
mov VendorId + 8, ecx
mov eax, 1 // call cpuid with eax = 1
cpuid
mov Regeax, eax // eax contains family processor type
mov Regedx, edx // edx has info about the availability of hyper-Threading
}
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return(0); // cpuid is unavailable
}
if (((Regeax & FAMILY_ID) == PENTIUM4_ID) || (Regeax & EXT_FAMILY_ID))
{
if (VendorId[0] == 'uneG')
{
if (VendorId[1] == 'Ieni')
{
if (VendorId[2] == 'letn')
{
return(Regedx & HT_BIT); // Genuine Intel with hyper-Threading technology
}
}
}
}
#endif
return 0; // Not genuine Intel processor
}
/** Return the APIC Id. Works only for windows. */
unsigned char SystemInformationImplementation::GetAPICId()
{
unsigned int Regebx = 0;
#if USE_ASM_INSTRUCTIONS
if (!this->IsHyperThreadingSupported())
{
return (unsigned char) -1; // HT not supported
} // Logical processor = 1
__asm
{
mov eax, 1
cpuid
mov Regebx, ebx
}
#endif
return (unsigned char) ((Regebx & INITIAL_APIC_ID_BITS) >> 24);
}
/** Count the number of CPUs. Works only on windows. */
int SystemInformationImplementation::CPUCount()
{
#if _WIN32
unsigned char StatusFlag = 0;
SYSTEM_INFO info;
this->NumberOfPhysicalCPU = 0;
this->NumberOfLogicalCPU = 0;
info.dwNumberOfProcessors = 0;
GetSystemInfo (&info);
// Number of physical processors in a non-Intel system
// or in a 32-bit Intel system with Hyper-Threading technology disabled
this->NumberOfPhysicalCPU = (unsigned char) info.dwNumberOfProcessors;
if (this->IsHyperThreadingSupported())
{
unsigned char HT_Enabled = 0;
this->NumberOfLogicalCPU = this->LogicalCPUPerPhysicalCPU();
if (this->NumberOfLogicalCPU >= 1) // >1 Doesn't mean HT is enabled in the BIOS
{
HANDLE hCurrentProcessHandle;
#ifndef _WIN64
# define DWORD_PTR DWORD
#endif
DWORD_PTR dwProcessAffinity;
DWORD_PTR dwSystemAffinity;
DWORD dwAffinityMask;
// Calculate the appropriate shifts and mask based on the
// number of logical processors.
unsigned int i = 1;
unsigned char PHY_ID_MASK = 0xFF;
//unsigned char PHY_ID_SHIFT = 0;
while (i < this->NumberOfLogicalCPU)
{
i *= 2;
PHY_ID_MASK <<= 1;
// PHY_ID_SHIFT++;
}
hCurrentProcessHandle = GetCurrentProcess();
GetProcessAffinityMask(hCurrentProcessHandle, &dwProcessAffinity,
&dwSystemAffinity);
// Check if available process affinity mask is equal to the
// available system affinity mask
if (dwProcessAffinity != dwSystemAffinity)
{
StatusFlag = HT_CANNOT_DETECT;
this->NumberOfPhysicalCPU = (unsigned char)-1;
return StatusFlag;
}
dwAffinityMask = 1;
while (dwAffinityMask != 0 && dwAffinityMask <= dwProcessAffinity)
{
// Check if this CPU is available
if (dwAffinityMask & dwProcessAffinity)
{
if (SetProcessAffinityMask(hCurrentProcessHandle,
dwAffinityMask))
{
unsigned char APIC_ID, LOG_ID;
Sleep(0); // Give OS time to switch CPU
APIC_ID = GetAPICId();
LOG_ID = APIC_ID & ~PHY_ID_MASK;
if (LOG_ID != 0)
{
HT_Enabled = 1;
}
}
}
dwAffinityMask = dwAffinityMask << 1;
}
// Reset the processor affinity
SetProcessAffinityMask(hCurrentProcessHandle, dwProcessAffinity);
if (this->NumberOfLogicalCPU == 1) // Normal P4 : HT is disabled in hardware
{
StatusFlag = HT_DISABLED;
}
else
{
if (HT_Enabled)
{
// Total physical processors in a Hyper-Threading enabled system.
this->NumberOfPhysicalCPU /= (this->NumberOfLogicalCPU);
StatusFlag = HT_ENABLED;
}
else
{
StatusFlag = HT_SUPPORTED_NOT_ENABLED;
}
}
}
}
else
{
// Processors do not have Hyper-Threading technology
StatusFlag = HT_NOT_CAPABLE;
this->NumberOfLogicalCPU = 1;
}
return StatusFlag;
#else
return 0;
#endif
}
/** Return the number of logical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU()
{
return this->NumberOfLogicalCPU;
}
/** Return the number of physical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU()
{
return this->NumberOfPhysicalCPU;
}
/** For Mac we Parse the sysctl -a output */
bool SystemInformationImplementation::ParseSysCtl()
{
// Extract the arguments from the command line
kwsys_stl::vector<const char*> args;
args.push_back("sysctl");
args.push_back("-a");
args.push_back(0);
this->SysCtlBuffer = this->RunProcess(args);
// Parse values for Mac
this->TotalPhysicalMemory = atoi(this->ExtractValueFromSysCtl("hw.memsize:").c_str())/(1024*1024);
this->TotalVirtualMemory = 0;
this->AvailablePhysicalMemory = 0;
this->AvailableVirtualMemory = 0;
this->NumberOfPhysicalCPU = atoi(this->ExtractValueFromSysCtl("hw.physicalcpu:").c_str());
this->NumberOfLogicalCPU = atoi(this->ExtractValueFromSysCtl("hw.logicalcpu:").c_str());
if(this->NumberOfPhysicalCPU!=0)
{
this->NumberOfLogicalCPU /= this->NumberOfPhysicalCPU;
}
this->CPUSpeedInMHz = atoi(this->ExtractValueFromSysCtl("hw.cpufrequency:").c_str());
this->CPUSpeedInMHz /= 1000000;
// Chip family
this->ChipID.Family = atoi(this->ExtractValueFromSysCtl("machdep.cpu.family:").c_str());
// Chip Vendor
strcpy(this->ChipID.Vendor,this->ExtractValueFromSysCtl("machdep.cpu.vendor:").c_str());
this->FindManufacturer();
// Chip Model
this->ChipID.Model = atoi(this->ExtractValueFromSysCtl("machdep.cpu.model:").c_str());
this->RetrieveClassicalCPUIdentity();
// Cache size
this->Features.L1CacheSize = atoi(this->ExtractValueFromSysCtl("hw.l1icachesize:").c_str());
this->Features.L2CacheSize = atoi(this->ExtractValueFromSysCtl("hw.l2cachesize:").c_str());
return true;
}
/** Extract a value from sysctl command */
kwsys_stl::string SystemInformationImplementation::ExtractValueFromSysCtl(const char* word)
{
size_t pos = this->SysCtlBuffer.find(word);
if(pos != this->SysCtlBuffer.npos)
{
pos = this->SysCtlBuffer.find(": ",pos);
size_t pos2 = this->SysCtlBuffer.find("\n",pos);
if(pos!=this->SysCtlBuffer.npos && pos2!=this->SysCtlBuffer.npos)
{
return this->SysCtlBuffer.substr(pos+2,pos2-pos-2);
}
}
return "";
}
/** Run a given process */
kwsys_stl::string SystemInformationImplementation::RunProcess(kwsys_stl::vector<const char*> args)
{
kwsys_stl::string buffer = "";
// Run the application
kwsysProcess* gp = kwsysProcess_New();
kwsysProcess_SetCommand(gp, &*args.begin());
kwsysProcess_SetOption(gp,kwsysProcess_Option_HideWindow,1);
kwsysProcess_Execute(gp);
char* data = NULL;
int length;
double timeout = 255;
while(kwsysProcess_WaitForData(gp,&data,&length,&timeout)) // wait for 1s
{
for(int i=0;i<length;i++)
{
buffer += data[i];
}
}
kwsysProcess_WaitForExit(gp, 0);
int result = 0;
switch(kwsysProcess_GetState(gp))
{
case kwsysProcess_State_Exited:
{
result = kwsysProcess_GetExitValue(gp);
} break;
case kwsysProcess_State_Error:
{
kwsys_ios::cerr << "Error: Could not run " << args[0] << ":\n";
kwsys_ios::cerr << kwsysProcess_GetErrorString(gp) << "\n";
} break;
case kwsysProcess_State_Exception:
{
kwsys_ios::cerr << "Error: " << args[0]
<< " terminated with an exception: "
<< kwsysProcess_GetExceptionString(gp) << "\n";
} break;
case kwsysProcess_State_Starting:
case kwsysProcess_State_Executing:
case kwsysProcess_State_Expired:
case kwsysProcess_State_Killed:
{
// Should not get here.
kwsys_ios::cerr << "Unexpected ending state after running " << args[0]
<< kwsys_stl::endl;
} break;
}
kwsysProcess_Delete(gp);
if(result)
{
kwsys_ios::cerr << "Error " << args[0] << " returned :" << result << "\n";
}
return buffer;
}
kwsys_stl::string SystemInformationImplementation::ParseValueFromKStat(const char* arguments)
{
kwsys_stl::vector<const char*> args;
args.clear();
args.push_back("kstat");
args.push_back("-p");
kwsys_stl::string command = arguments;
size_t start = command.npos;
size_t pos = command.find(' ',0);
while(pos!=command.npos)
{
bool inQuotes = false;
// Check if we are between quotes
size_t b0 = command.find('"',0);
size_t b1 = command.find('"',b0+1);
while(b0 != command.npos && b1 != command.npos && b1>b0)
{
if(pos>b0 && pos<b1)
{
inQuotes = true;
break;
}
b0 = command.find('"',b1+1);
b1 = command.find('"',b0+1);
}
if(!inQuotes)
{
kwsys_stl::string arg = command.substr(start+1,pos-start-1);
// Remove the quotes if any
size_t quotes = arg.find('"');
while(quotes != arg.npos)
{
arg.erase(quotes,1);
quotes = arg.find('"');
}
args.push_back(arg.c_str());
start = pos;
}
pos = command.find(' ',pos+1);
}
kwsys_stl::string lastArg = command.substr(start+1,command.size()-start-1);
args.push_back(lastArg.c_str());
args.push_back(0);
kwsys_stl::string buffer = this->RunProcess(args);
kwsys_stl::string value = "";
for(size_t i=buffer.size()-1;i>0;i--)
{
if(buffer[i] == ' ' || buffer[i] == '\t')
{
break;
}
if(buffer[i] != '\n' && buffer[i] != '\r')
{
kwsys_stl::string val = value;
value = buffer[i];
value += val;
}
}
return value;
}
/** Querying for system information from Solaris */
bool SystemInformationImplementation::QuerySolarisInfo()
{
// Parse values
this->NumberOfPhysicalCPU = atoi(this->ParseValueFromKStat("-n systethis->misc -s ncpus").c_str());
this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;
if(this->NumberOfPhysicalCPU!=0)
{
this->NumberOfLogicalCPU /= this->NumberOfPhysicalCPU;
}
this->CPUSpeedInMHz = atoi(this->ParseValueFromKStat("-s clock_MHz").c_str());
// Chip family
this->ChipID.Family = 0;
// Chip Vendor
strcpy(this->ChipID.Vendor,"Sun");
this->FindManufacturer();
// Chip Model
sprintf(this->ChipID.ProcessorName,"%s",this->ParseValueFromKStat("-s cpu_type").c_str());
this->ChipID.Model = 0;
// Cache size
this->Features.L1CacheSize = 0;
this->Features.L2CacheSize = 0;
char* tail;
unsigned long totalMemory =
strtoul(this->ParseValueFromKStat("-s physmem").c_str(),&tail,0);
this->TotalPhysicalMemory = totalMemory/1024;
this->TotalPhysicalMemory *= 8192;
this->TotalPhysicalMemory /= 1024;
// Undefined values (for now at least)
this->TotalVirtualMemory = 0;
this->AvailablePhysicalMemory = 0;
this->AvailableVirtualMemory = 0;
return true;
}
/** Query the operating system information */
bool SystemInformationImplementation::QueryOSInformation()
{
#if _WIN32
this->OSName = "Windows";
OSVERSIONINFOEX osvi;
BOOL bIsWindows64Bit;
BOOL bOsVersionInfoEx;
char operatingSystem[256];
// Try calling GetVersionEx using the OSVERSIONINFOEX structure.
ZeroMemory (&osvi, sizeof (OSVERSIONINFOEX));
osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOEX);
bOsVersionInfoEx = GetVersionEx ((OSVERSIONINFO *) &osvi);
if (!bOsVersionInfoEx)
{
osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO);
if (!GetVersionEx ((OSVERSIONINFO *) &osvi))
{
return false;
}
}
switch (osvi.dwPlatformId)
{
case VER_PLATFORM_WIN32_NT:
// Test for the product.
if (osvi.dwMajorVersion <= 4)
{
this->OSRelease = "NT";
}
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0)
{
this->OSRelease = "2000";
}
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease = "XP";
}
#ifdef VER_NT_WORKSTATION
// Test for product type.
if (bOsVersionInfoEx)
{
if (osvi.wProductType == VER_NT_WORKSTATION)
{
// VER_SUITE_PERSONAL may not be defined
#ifdef VER_SUITE_PERSONAL
if (osvi.wSuiteMask & VER_SUITE_PERSONAL)
{
this->OSRelease += " Personal";
}
else
{
this->OSRelease += " Professional";
}
#endif
}
else if (osvi.wProductType == VER_NT_SERVER)
{
// Check for .NET Server instead of Windows XP.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease = ".NET";
}
// Continue with the type detection.
if (osvi.wSuiteMask & VER_SUITE_DATACENTER)
{
this->OSRelease += " DataCenter Server";
}
else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE)
{
this->OSRelease += " Advanced Server";
}
else
{
this->OSRelease += " Server";
}
}
sprintf (operatingSystem, "%s(Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
}
else
#endif // VER_NT_WORKSTATION
{
HKEY hKey;
char szProductType[80];
DWORD dwBufLen;
// Query the registry to retrieve information.
RegOpenKeyEx (HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0, KEY_QUERY_VALUE, &hKey);
RegQueryValueEx (hKey, "ProductType", NULL, NULL, (LPBYTE) szProductType, &dwBufLen);
RegCloseKey (hKey);
if (lstrcmpi ("WINNT", szProductType) == 0)
{
this->OSRelease += " Professional";
}
if (lstrcmpi ("LANMANNT", szProductType) == 0)
{
// Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease += " Standard Server";
}
else
{
this->OSRelease += " Server";
}
}
if (lstrcmpi ("SERVERNT", szProductType) == 0)
{
// Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
this->OSRelease += " Enterprise Server";
}
else
{
this->OSRelease += " Advanced Server";
}
}
}
// Display version, service pack (if any), and build number.
if (osvi.dwMajorVersion <= 4)
{
// NB: NT 4.0 and earlier.
sprintf (operatingSystem, "version %ld.%ld %s (Build %ld)",
osvi.dwMajorVersion,
osvi.dwMinorVersion,
osvi.szCSDVersion,
osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
}
else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
{
// Windows XP and .NET server.
typedef BOOL (CALLBACK* LPFNPROC) (HANDLE, BOOL *);
HINSTANCE hKernelDLL;
LPFNPROC DLLProc;
// Load the Kernel32 DLL.
hKernelDLL = LoadLibrary ("kernel32");
if (hKernelDLL != NULL) {
// Only XP and .NET Server support IsWOW64Process so... Load dynamically!
DLLProc = (LPFNPROC) GetProcAddress (hKernelDLL, "IsWow64Process");
// If the function address is valid, call the function.
if (DLLProc != NULL) (DLLProc) (GetCurrentProcess (), &bIsWindows64Bit);
else bIsWindows64Bit = false;
// Free the DLL module.
FreeLibrary (hKernelDLL);
}
}
else
{
// Windows 2000 and everything else.
sprintf (operatingSystem,"%s(Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
this->OSVersion = operatingSystem;
}
break;
case VER_PLATFORM_WIN32_WINDOWS:
// Test for the product.
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0)
{
this->OSRelease = "95";
if(osvi.szCSDVersion[1] == 'C')
{
this->OSRelease += "OSR 2.5";
}
else if(osvi.szCSDVersion[1] == 'B')
{
this->OSRelease += "OSR 2";
}
}
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10)
{
this->OSRelease = "98";
if (osvi.szCSDVersion[1] == 'A' )
{
this->OSRelease += "SE";
}
}
if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90)
{
this->OSRelease = "Me";
}
break;
case VER_PLATFORM_WIN32s:
this->OSRelease = "Win32s";
break;
default:
this->OSRelease = "Unknown";
break;
}
// Get the hostname
WORD wVersionRequested;
WSADATA wsaData;
char name[255];
wVersionRequested = MAKEWORD(2,0);
if ( WSAStartup( wVersionRequested, &wsaData ) == 0 )
{
gethostname(name,sizeof(name));
WSACleanup( );
}
this->Hostname = name;
#else
struct utsname unameInfo;
int errorFlag = uname(&unameInfo);
if(errorFlag == 0)
{
this->OSName = unameInfo.sysname;
this->Hostname = unameInfo.nodename;
this->OSRelease = unameInfo.release;
this->OSVersion = unameInfo.version;
this->OSPlatform = unameInfo.machine;
}
#endif
return true;
}
/** Return true if the machine is 64 bits */
bool SystemInformationImplementation::Is64Bits()
{
return (sizeof(void*) == 8);
}
} // namespace @KWSYS_NAMESPACE@