233 lines
4.5 KiB
C
233 lines
4.5 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file range_encoder.h
|
|
/// \brief Range Encoder
|
|
///
|
|
// Authors: Igor Pavlov
|
|
// Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef LZMA_RANGE_ENCODER_H
|
|
#define LZMA_RANGE_ENCODER_H
|
|
|
|
#include "range_common.h"
|
|
#include "price.h"
|
|
|
|
|
|
/// Maximum number of symbols that can be put pending into lzma_range_encoder
|
|
/// structure between calls to lzma_rc_encode(). For LZMA, 52+5 is enough
|
|
/// (match with big distance and length followed by range encoder flush).
|
|
#define RC_SYMBOLS_MAX 58
|
|
|
|
|
|
typedef struct {
|
|
uint64_t low;
|
|
uint64_t cache_size;
|
|
uint32_t range;
|
|
uint8_t cache;
|
|
|
|
/// Number of symbols in the tables
|
|
size_t count;
|
|
|
|
/// rc_encode()'s position in the tables
|
|
size_t pos;
|
|
|
|
/// Symbols to encode
|
|
enum {
|
|
RC_BIT_0,
|
|
RC_BIT_1,
|
|
RC_DIRECT_0,
|
|
RC_DIRECT_1,
|
|
RC_FLUSH,
|
|
} symbols[RC_SYMBOLS_MAX];
|
|
|
|
/// Probabilities associated with RC_BIT_0 or RC_BIT_1
|
|
probability *probs[RC_SYMBOLS_MAX];
|
|
|
|
} lzma_range_encoder;
|
|
|
|
|
|
static inline void
|
|
rc_reset(lzma_range_encoder *rc)
|
|
{
|
|
rc->low = 0;
|
|
rc->cache_size = 1;
|
|
rc->range = UINT32_MAX;
|
|
rc->cache = 0;
|
|
rc->count = 0;
|
|
rc->pos = 0;
|
|
}
|
|
|
|
|
|
static inline void
|
|
rc_bit(lzma_range_encoder *rc, probability *prob, uint32_t bit)
|
|
{
|
|
rc->symbols[rc->count] = bit;
|
|
rc->probs[rc->count] = prob;
|
|
++rc->count;
|
|
}
|
|
|
|
|
|
static inline void
|
|
rc_bittree(lzma_range_encoder *rc, probability *probs,
|
|
uint32_t bit_count, uint32_t symbol)
|
|
{
|
|
uint32_t model_index = 1;
|
|
|
|
do {
|
|
const uint32_t bit = (symbol >> --bit_count) & 1;
|
|
rc_bit(rc, &probs[model_index], bit);
|
|
model_index = (model_index << 1) + bit;
|
|
} while (bit_count != 0);
|
|
}
|
|
|
|
|
|
static inline void
|
|
rc_bittree_reverse(lzma_range_encoder *rc, probability *probs,
|
|
uint32_t bit_count, uint32_t symbol)
|
|
{
|
|
uint32_t model_index = 1;
|
|
|
|
do {
|
|
const uint32_t bit = symbol & 1;
|
|
symbol >>= 1;
|
|
rc_bit(rc, &probs[model_index], bit);
|
|
model_index = (model_index << 1) + bit;
|
|
} while (--bit_count != 0);
|
|
}
|
|
|
|
|
|
static inline void
|
|
rc_direct(lzma_range_encoder *rc,
|
|
uint32_t value, uint32_t bit_count)
|
|
{
|
|
do {
|
|
rc->symbols[rc->count++]
|
|
= RC_DIRECT_0 + ((value >> --bit_count) & 1);
|
|
} while (bit_count != 0);
|
|
}
|
|
|
|
|
|
static inline void
|
|
rc_flush(lzma_range_encoder *rc)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < 5; ++i)
|
|
rc->symbols[rc->count++] = RC_FLUSH;
|
|
}
|
|
|
|
|
|
static inline bool
|
|
rc_shift_low(lzma_range_encoder *rc,
|
|
uint8_t *out, size_t *out_pos, size_t out_size)
|
|
{
|
|
if ((uint32_t)(rc->low) < (uint32_t)(0xFF000000)
|
|
|| (uint32_t)(rc->low >> 32) != 0) {
|
|
do {
|
|
if (*out_pos == out_size)
|
|
return true;
|
|
|
|
out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
|
|
++*out_pos;
|
|
rc->cache = 0xFF;
|
|
|
|
} while (--rc->cache_size != 0);
|
|
|
|
rc->cache = (rc->low >> 24) & 0xFF;
|
|
}
|
|
|
|
++rc->cache_size;
|
|
rc->low = (rc->low & 0x00FFFFFF) << RC_SHIFT_BITS;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static inline bool
|
|
rc_encode(lzma_range_encoder *rc,
|
|
uint8_t *out, size_t *out_pos, size_t out_size)
|
|
{
|
|
assert(rc->count <= RC_SYMBOLS_MAX);
|
|
|
|
while (rc->pos < rc->count) {
|
|
// Normalize
|
|
if (rc->range < RC_TOP_VALUE) {
|
|
if (rc_shift_low(rc, out, out_pos, out_size))
|
|
return true;
|
|
|
|
rc->range <<= RC_SHIFT_BITS;
|
|
}
|
|
|
|
// Encode a bit
|
|
switch (rc->symbols[rc->pos]) {
|
|
case RC_BIT_0: {
|
|
probability prob = *rc->probs[rc->pos];
|
|
rc->range = (rc->range >> RC_BIT_MODEL_TOTAL_BITS)
|
|
* prob;
|
|
prob += (RC_BIT_MODEL_TOTAL - prob) >> RC_MOVE_BITS;
|
|
*rc->probs[rc->pos] = prob;
|
|
break;
|
|
}
|
|
|
|
case RC_BIT_1: {
|
|
probability prob = *rc->probs[rc->pos];
|
|
const uint32_t bound = prob * (rc->range
|
|
>> RC_BIT_MODEL_TOTAL_BITS);
|
|
rc->low += bound;
|
|
rc->range -= bound;
|
|
prob -= prob >> RC_MOVE_BITS;
|
|
*rc->probs[rc->pos] = prob;
|
|
break;
|
|
}
|
|
|
|
case RC_DIRECT_0:
|
|
rc->range >>= 1;
|
|
break;
|
|
|
|
case RC_DIRECT_1:
|
|
rc->range >>= 1;
|
|
rc->low += rc->range;
|
|
break;
|
|
|
|
case RC_FLUSH:
|
|
// Prevent further normalizations.
|
|
rc->range = UINT32_MAX;
|
|
|
|
// Flush the last five bytes (see rc_flush()).
|
|
do {
|
|
if (rc_shift_low(rc, out, out_pos, out_size))
|
|
return true;
|
|
} while (++rc->pos < rc->count);
|
|
|
|
// Reset the range encoder so we are ready to continue
|
|
// encoding if we weren't finishing the stream.
|
|
rc_reset(rc);
|
|
return false;
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
++rc->pos;
|
|
}
|
|
|
|
rc->count = 0;
|
|
rc->pos = 0;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static inline uint64_t
|
|
rc_pending(const lzma_range_encoder *rc)
|
|
{
|
|
return rc->cache_size + 5 - 1;
|
|
}
|
|
|
|
#endif
|