/*========================================================================= Program: KWSys - Kitware System Library Module: $RCSfile$ Copyright (c) Kitware, Inc., Insight Consortium. All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ /* * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef @KWSYS_NAMESPACE@_hashtable_hxx #define @KWSYS_NAMESPACE@_hashtable_hxx #include <@KWSYS_NAMESPACE@/Configure.hxx> #include <@KWSYS_NAMESPACE@/stl/algorithm> // lower_bound #include <@KWSYS_NAMESPACE@/stl/functional> // unary_function #include <@KWSYS_NAMESPACE@/stl/iterator> // iterator_traits #include <@KWSYS_NAMESPACE@/stl/memory> // allocator #include <@KWSYS_NAMESPACE@/stl/utility> // pair #include <@KWSYS_NAMESPACE@/stl/vector> // vector #if defined(_MSC_VER) # pragma warning (push) # pragma warning (disable:4284) # pragma warning (disable:4786) #endif namespace @KWSYS_NAMESPACE@ { //---------------------------------------------------------------------------- // Define an allocator adaptor for platforms that do not provide an // allocator with the rebind member. #if !@KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_REBIND class hash_allocator_base {}; bool operator==(const hash_allocator_base&, const hash_allocator_base&) throw() { return true; } bool operator!=(const hash_allocator_base&, const hash_allocator_base&) throw() { return false; } template class hash_allocator: public hash_allocator_base { private: // Store the real allocator privately. typedef Alloc alloc_type; typedef typename alloc_type::value_type alloc_value_type; typedef typename alloc_type::pointer alloc_pointer; alloc_type alloc_; public: // Standard allocator interface. typedef typename alloc_type::size_type size_type; typedef typename alloc_type::difference_type difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; hash_allocator() throw(): alloc_() {} hash_allocator(const hash_allocator_base& a) throw() : alloc_() {} hash_allocator(const hash_allocator& a) throw() : alloc_(a.alloc_) {} hash_allocator(const alloc_type& a) throw() : alloc_(a) {} ~hash_allocator() throw() {} # if @KWSYS_NAMESPACE@_CXX_HAS_MEMBER_TEMPLATES template struct rebind { typedef hash_allocator other; }; # endif pointer address(reference x) const { return &x; } const_pointer address(const_reference x) const { return &x; } pointer allocate(size_type n=1, kwsys_stl::allocator::const_pointer hint = 0) { if(n) { typedef kwsys_stl::allocator::pointer void_pointer; return static_cast( static_cast( alloc_.allocate(n*chunk(), const_cast(hint)))); } else { return 0; } } void deallocate(pointer p, size_type n=1) { if(n) { alloc_.deallocate(static_cast(static_cast(p)), n*chunk()); } } #if @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_MAX_SIZE_ARGUMENT size_type max_size(size_type s) const throw() { return alloc_.max_size(s); } #else size_type max_size() const throw() { size_type n = alloc_.max_size() / chunk(); return n>0? n:1; } #endif void construct(pointer p, const value_type& val) { new (p) value_type(val); } void destroy(pointer p) { (void)p; p->~value_type(); } private: // Returns the number of the real allocator's allocation units // needed to allocate one unit for this allocator. static size_type chunk() { return (sizeof(value_type)/sizeof(alloc_value_type)+ (sizeof(value_type)%sizeof(alloc_value_type)>0)); } }; #endif template struct _Hashtable_node { _Hashtable_node* _M_next; _Val _M_val; }; template > class hashtable; template struct _Hashtable_iterator; template struct _Hashtable_const_iterator; template struct _Hashtable_iterator { typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc> _Hashtable; typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef kwsys_stl::forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef _Val& reference; typedef _Val* pointer; _Node* _M_cur; _Hashtable* _M_ht; _Hashtable_iterator(_Node* __n, _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) {} _Hashtable_iterator() {} reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } iterator& operator++(); iterator operator++(int); bool operator==(const iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const iterator& __it) const { return _M_cur != __it._M_cur; } }; template struct _Hashtable_const_iterator { typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc> _Hashtable; typedef _Hashtable_iterator<_Val,_Key,_HashFcn, _ExtractKey,_EqualKey,_Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef kwsys_stl::forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef const _Val& reference; typedef const _Val* pointer; const _Node* _M_cur; const _Hashtable* _M_ht; _Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) {} _Hashtable_const_iterator() {} _Hashtable_const_iterator(const iterator& __it) : _M_cur(__it._M_cur), _M_ht(__it._M_ht) {} reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } const_iterator& operator++(); const_iterator operator++(int); bool operator==(const const_iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const const_iterator& __it) const { return _M_cur != __it._M_cur; } }; // Note: assumes long is at least 32 bits. enum { _stl_num_primes = 28 }; static const unsigned long _stl_prime_list[_stl_num_primes] = { 53ul, 97ul, 193ul, 389ul, 769ul, 1543ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul }; inline unsigned long _stl_next_prime(unsigned long __n) { const unsigned long* __first = _stl_prime_list; const unsigned long* __last = _stl_prime_list + (int)_stl_num_primes; const unsigned long* pos = kwsys_stl::lower_bound(__first, __last, __n); return pos == __last ? *(__last - 1) : *pos; } // Forward declaration of operator==. template class hashtable; template bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1, const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2); // Hashtables handle allocators a bit differently than other containers // do. If we're using standard-conforming allocators, then a hashtable // unconditionally has a member variable to hold its allocator, even if // it so happens that all instances of the allocator type are identical. // This is because, for hashtables, this extra storage is negligible. // Additionally, a base class wouldn't serve any other purposes; it // wouldn't, for example, simplify the exception-handling code. template class hashtable { public: typedef _Key key_type; typedef _Val value_type; typedef _HashFcn hasher; typedef _EqualKey key_equal; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; hasher hash_funct() const { return _M_hash; } key_equal key_eq() const { return _M_equals; } private: typedef _Hashtable_node<_Val> _Node; #if @KWSYS_NAMESPACE@_STL_HAS_ALLOCATOR_REBIND public: typedef typename _Alloc::template rebind<_Val>::other allocator_type; allocator_type get_allocator() const { return _M_node_allocator; } private: typedef typename _Alloc::template rebind<_Node>::other _M_node_allocator_type; typedef typename _Alloc::template rebind<_Node*>::other _M_node_ptr_allocator_type; typedef kwsys_stl::vector<_Node*,_M_node_ptr_allocator_type> _M_buckets_type; #else public: typedef hash_allocator<_Val, _Alloc> allocator_type; allocator_type get_allocator() const { return allocator_type(); } private: typedef hash_allocator<_Node, _Alloc> _M_node_allocator_type; typedef hash_allocator<_Node*, _Alloc> _M_node_ptr_allocator_type; typedef kwsys_stl::vector<_Node*,_M_node_ptr_allocator_type> _M_buckets_type; #endif private: _M_node_allocator_type _M_node_allocator; hasher _M_hash; key_equal _M_equals; _ExtractKey _M_get_key; _M_buckets_type _M_buckets; size_type _M_num_elements; _Node* _M_get_node() { return _M_node_allocator.allocate(1); } void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); } public: typedef _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc> iterator; typedef _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey, _Alloc> const_iterator; friend struct _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>; friend struct _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>; public: hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const _ExtractKey& __ext, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(__ext), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(_ExtractKey()), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(const hashtable& __ht) : _M_node_allocator(__ht.get_allocator()), _M_hash(__ht._M_hash), _M_equals(__ht._M_equals), _M_get_key(__ht._M_get_key), _M_buckets(__ht.get_allocator()), _M_num_elements(0) { _M_copy_from(__ht); } hashtable& operator= (const hashtable& __ht) { if (&__ht != this) { clear(); _M_hash = __ht._M_hash; _M_equals = __ht._M_equals; _M_get_key = __ht._M_get_key; _M_copy_from(__ht); } return *this; } ~hashtable() { clear(); } size_type size() const { return _M_num_elements; } size_type max_size() const { return size_type(-1); } bool empty() const { return size() == 0; } void swap(hashtable& __ht) { kwsys_stl::swap(_M_hash, __ht._M_hash); kwsys_stl::swap(_M_equals, __ht._M_equals); kwsys_stl::swap(_M_get_key, __ht._M_get_key); _M_buckets.swap(__ht._M_buckets); kwsys_stl::swap(_M_num_elements, __ht._M_num_elements); } iterator begin() { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return iterator(_M_buckets[__n], this); return end(); } iterator end() { return iterator(0, this); } const_iterator begin() const { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return const_iterator(_M_buckets[__n], this); return end(); } const_iterator end() const { return const_iterator(0, this); } friend bool operator==@KWSYS_NAMESPACE@_CXX_NULL_TEMPLATE_ARGS(const hashtable&, const hashtable&); public: size_type bucket_count() const { return _M_buckets.size(); } size_type max_bucket_count() const { return _stl_prime_list[(int)_stl_num_primes - 1]; } size_type elems_in_bucket(size_type __bucket) const { size_type __result = 0; for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next) __result += 1; return __result; } kwsys_stl::pair insert_unique(const value_type& __obj) { resize(_M_num_elements + 1); return insert_unique_noresize(__obj); } iterator insert_equal(const value_type& __obj) { resize(_M_num_elements + 1); return insert_equal_noresize(__obj); } kwsys_stl::pair insert_unique_noresize(const value_type& __obj); iterator insert_equal_noresize(const value_type& __obj); #if @KWSYS_NAMESPACE@_CXX_HAS_MEMBER_TEMPLATES template void insert_unique(_InputIterator __f, _InputIterator __l) { typedef typename kwsys_stl::iterator_traits<_InputIterator>::iterator_category iterator_category; insert_unique(__f, __l, iterator_category()); } template void insert_equal(_InputIterator __f, _InputIterator __l) { typedef typename kwsys_stl::iterator_traits<_InputIterator>::iterator_category iterator_category; insert_equal(__f, __l, iterator_category()); } template void insert_unique(_InputIterator __f, _InputIterator __l, kwsys_stl::input_iterator_tag) { for ( ; __f != __l; ++__f) insert_unique(*__f); } template void insert_equal(_InputIterator __f, _InputIterator __l, kwsys_stl::input_iterator_tag) { for ( ; __f != __l; ++__f) insert_equal(*__f); } template void insert_unique(_ForwardIterator __f, _ForwardIterator __l, kwsys_stl::forward_iterator_tag) { size_type __n = 0; kwsys_stl::distance(__f, __l, __n); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_unique_noresize(*__f); } template void insert_equal(_ForwardIterator __f, _ForwardIterator __l, kwsys_stl::forward_iterator_tag) { size_type __n = 0; kwsys_stl::distance(__f, __l, __n); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_equal_noresize(*__f); } #else void insert_unique(const value_type* __f, const value_type* __l) { size_type __n = __l - __f; resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_unique_noresize(*__f); } void insert_equal(const value_type* __f, const value_type* __l) { size_type __n = __l - __f; resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_equal_noresize(*__f); } void insert_unique(const_iterator __f, const_iterator __l) { size_type __n = 0; kwsys_stl::distance(__f, __l, __n); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_unique_noresize(*__f); } void insert_equal(const_iterator __f, const_iterator __l) { size_type __n = 0; kwsys_stl::distance(__f, __l, __n); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_equal_noresize(*__f); } #endif reference find_or_insert(const value_type& __obj); iterator find(const key_type& __key) { size_type __n = _M_bkt_num_key(__key); _Node* __first; for ( __first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) {} return iterator(__first, this); } const_iterator find(const key_type& __key) const { size_type __n = _M_bkt_num_key(__key); const _Node* __first; for ( __first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) {} return const_iterator(__first, this); } size_type count(const key_type& __key) const { const size_type __n = _M_bkt_num_key(__key); size_type __result = 0; for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), __key)) ++__result; return __result; } kwsys_stl::pair equal_range(const key_type& __key); kwsys_stl::pair equal_range(const key_type& __key) const; size_type erase(const key_type& __key); void erase(const iterator& __it); void erase(iterator __first, iterator __last); void erase(const const_iterator& __it); void erase(const_iterator __first, const_iterator __last); void resize(size_type __num_elements_hint); void clear(); private: size_type _M_next_size(size_type __n) const { return _stl_next_prime(__n); } void _M_initialize_buckets(size_type __n) { const size_type __n_buckets = _M_next_size(__n); _M_buckets.reserve(__n_buckets); _M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0); _M_num_elements = 0; } size_type _M_bkt_num_key(const key_type& __key) const { return _M_bkt_num_key(__key, _M_buckets.size()); } size_type _M_bkt_num(const value_type& __obj) const { return _M_bkt_num_key(_M_get_key(__obj)); } size_type _M_bkt_num_key(const key_type& __key, size_t __n) const { return _M_hash(__key) % __n; } size_type _M_bkt_num(const value_type& __obj, size_t __n) const { return _M_bkt_num_key(_M_get_key(__obj), __n); } void construct(_Val* p, const _Val& v) { new (p) _Val(v); } void destroy(_Val* p) { (void)p; p->~_Val(); } _Node* _M_new_node(const value_type& __obj) { _Node* __n = _M_get_node(); __n->_M_next = 0; try { construct(&__n->_M_val, __obj); return __n; } catch(...) {_M_put_node(__n); throw;} } void _M_delete_node(_Node* __n) { destroy(&__n->_M_val); _M_put_node(__n); } void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last); void _M_erase_bucket(const size_type __n, _Node* __last); void _M_copy_from(const hashtable& __ht); }; template _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>& _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template inline _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All> _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int) { iterator __tmp = *this; ++*this; return __tmp; } template _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>& _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template inline _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All> _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int) { const_iterator __tmp = *this; ++*this; return __tmp; } template bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1, const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) { typedef typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::_Node _Node; if (__ht1._M_buckets.size() != __ht2._M_buckets.size()) return false; for (int __n = 0; __n < __ht1._M_buckets.size(); ++__n) { _Node* __cur1 = __ht1._M_buckets[__n]; _Node* __cur2 = __ht2._M_buckets[__n]; for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val; __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next) {} if (__cur1 || __cur2) return false; } return true; } template inline bool operator!=(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1, const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) { return !(__ht1 == __ht2); } template inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1, hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) { __ht1.swap(__ht2); } template kwsys_stl::pair<@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, bool> hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::insert_unique_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return kwsys_stl::pair(iterator(__cur, this), false); _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return kwsys_stl::pair(iterator(__tmp, this), true); } template typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::insert_equal_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) { _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __cur->_M_next; __cur->_M_next = __tmp; ++_M_num_elements; return iterator(__tmp, this); } _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return iterator(__tmp, this); } template typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::reference hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::find_or_insert(const value_type& __obj) { resize(_M_num_elements + 1); size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return __cur->_M_val; _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return __tmp->_M_val; } template kwsys_stl::pair<@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, @KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator> hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::equal_range(const key_type& __key) { typedef kwsys_stl::pair _Pii; const size_type __n = _M_bkt_num_key(__key); for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(iterator(__first, this), iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(iterator(__first, this), iterator(_M_buckets[__m], this)); return _Pii(iterator(__first, this), end()); } return _Pii(end(), end()); } template kwsys_stl::pair<@KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator, @KWSYS_NAMESPACE@_CXX_DECL_TYPENAME hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator> hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::equal_range(const key_type& __key) const { typedef kwsys_stl::pair _Pii; const size_type __n = _M_bkt_num_key(__key); for (const _Node* __first = _M_buckets[__n] ; __first; __first = __first->_M_next) { if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (const _Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(const_iterator(__first, this), const_iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(const_iterator(__first, this), const_iterator(_M_buckets[__m], this)); return _Pii(const_iterator(__first, this), end()); } } return _Pii(end(), end()); } template typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::size_type hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const key_type& __key) { const size_type __n = _M_bkt_num_key(__key); _Node* __first = _M_buckets[__n]; size_type __erased = 0; if (__first) { _Node* __cur = __first; _Node* __next = __cur->_M_next; while (__next) { if (_M_equals(_M_get_key(__next->_M_val), __key)) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; ++__erased; --_M_num_elements; } else { __cur = __next; __next = __cur->_M_next; } } if (_M_equals(_M_get_key(__first->_M_val), __key)) { _M_buckets[__n] = __first->_M_next; _M_delete_node(__first); ++__erased; --_M_num_elements; } } return __erased; } template void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const iterator& __it) { _Node* __p = __it._M_cur; if (__p) { const size_type __n = _M_bkt_num(__p->_M_val); _Node* __cur = _M_buckets[__n]; if (__cur == __p) { _M_buckets[__n] = __cur->_M_next; _M_delete_node(__cur); --_M_num_elements; } else { _Node* __next = __cur->_M_next; while (__next) { if (__next == __p) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); --_M_num_elements; break; } else { __cur = __next; __next = __cur->_M_next; } } } } } template void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::erase(iterator __first, iterator __last) { size_type __f_bucket = __first._M_cur ? _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size(); size_type __l_bucket = __last._M_cur ? _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size(); if (__first._M_cur == __last._M_cur) return; else if (__f_bucket == __l_bucket) _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur); else { _M_erase_bucket(__f_bucket, __first._M_cur, 0); for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n) _M_erase_bucket(__n, 0); if (__l_bucket != _M_buckets.size()) _M_erase_bucket(__l_bucket, __last._M_cur); } } template inline void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const_iterator __first, const_iterator __last) { erase(iterator(const_cast<_Node*>(__first._M_cur), const_cast(__first._M_ht)), iterator(const_cast<_Node*>(__last._M_cur), const_cast(__last._M_ht))); } template inline void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const const_iterator& __it) { erase(iterator(const_cast<_Node*>(__it._M_cur), const_cast(__it._M_ht))); } template void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::resize(size_type __num_elements_hint) { const size_type __old_n = _M_buckets.size(); if (__num_elements_hint > __old_n) { const size_type __n = _M_next_size(__num_elements_hint); if (__n > __old_n) { _M_buckets_type __tmp(__n, (_Node*)(0), _M_buckets.get_allocator()); try { for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) { _Node* __first = _M_buckets[__bucket]; while (__first) { size_type __new_bucket = _M_bkt_num(__first->_M_val, __n); _M_buckets[__bucket] = __first->_M_next; __first->_M_next = __tmp[__new_bucket]; __tmp[__new_bucket] = __first; __first = _M_buckets[__bucket]; } } _M_buckets.swap(__tmp); } catch(...) { for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) { while (__tmp[__bucket]) { _Node* __next = __tmp[__bucket]->_M_next; _M_delete_node(__tmp[__bucket]); __tmp[__bucket] = __next; } } throw; } } } } template void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last) { _Node* __cur = _M_buckets[__n]; if (__cur == __first) _M_erase_bucket(__n, __last); else { _Node* __next; for (__next = __cur->_M_next; __next != __first; __cur = __next, __next = __cur->_M_next) ; while (__next != __last) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; --_M_num_elements; } } } template void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::_M_erase_bucket(const size_type __n, _Node* __last) { _Node* __cur = _M_buckets[__n]; while (__cur != __last) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; _M_buckets[__n] = __cur; --_M_num_elements; } } template void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::clear() { for (size_type __i = 0; __i < _M_buckets.size(); ++__i) { _Node* __cur = _M_buckets[__i]; while (__cur != 0) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; } _M_buckets[__i] = 0; } _M_num_elements = 0; } template void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::_M_copy_from(const hashtable& __ht) { _M_buckets.clear(); _M_buckets.reserve(__ht._M_buckets.size()); _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0); try { for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) { const _Node* __cur = __ht._M_buckets[__i]; if (__cur) { _Node* __copy = _M_new_node(__cur->_M_val); _M_buckets[__i] = __copy; for (_Node* __next = __cur->_M_next; __next; __cur = __next, __next = __cur->_M_next) { __copy->_M_next = _M_new_node(__next->_M_val); __copy = __copy->_M_next; } } } _M_num_elements = __ht._M_num_elements; } catch(...) {clear(); throw;} } } // namespace @KWSYS_NAMESPACE@ // Normally the comparison operators should be found in the @KWSYS_NAMESPACE@ // namespace by argument dependent lookup. For compilers that do not // support it we must bring them into the global namespace now. #if !@KWSYS_NAMESPACE@_CXX_HAS_ARGUMENT_DEPENDENT_LOOKUP using @KWSYS_NAMESPACE@::operator==; using @KWSYS_NAMESPACE@::operator!=; #endif #if defined(_MSC_VER) # pragma warning (pop) #endif #endif