/*============================================================================ KWSys - Kitware System Library Copyright 2000-2009 Kitware, Inc., Insight Software Consortium Distributed under the OSI-approved BSD License (the "License"); see accompanying file Copyright.txt for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the License for more information. ============================================================================*/ #if defined(_WIN32) # define NOMINMAX // use our min,max # if !defined(_WIN32_WINNT) && !(defined(_MSC_VER) && _MSC_VER < 1300) # define _WIN32_WINNT 0x0501 # endif # include // WSADATA, include before sys/types.h #endif #if (defined(__GNUC__) || defined(__PGI)) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif // TODO: // We need an alternative implementation for many functions in this file // when USE_ASM_INSTRUCTIONS gets defined as 0. // // Consider using these on Win32/Win64 for some of them: // // IsProcessorFeaturePresent // http://msdn.microsoft.com/en-us/library/ms724482(VS.85).aspx // // GetProcessMemoryInfo // http://msdn.microsoft.com/en-us/library/ms683219(VS.85).aspx #include "kwsysPrivate.h" #include KWSYS_HEADER(SystemInformation.hxx) #include KWSYS_HEADER(Process.h) // Work-around CMake dependency scanning limitation. This must // duplicate the above list of headers. #if 0 # include "SystemInformation.hxx.in" # include "Process.h.in" #endif #include #include #include #include #include #if defined(_WIN32) # include # if defined(_MSC_VER) && _MSC_VER >= 1800 # define KWSYS_WINDOWS_DEPRECATED_GetVersionEx # endif # include # if defined(KWSYS_SYS_HAS_PSAPI) # include # endif # if !defined(siginfo_t) typedef int siginfo_t; # endif #else # include # include # include // int uname(struct utsname *buf); # include // getrlimit # include # include # include # include // extern int errno; #endif #if defined (__CYGWIN__) && !defined(_WIN32) # include # undef _WIN32 #endif #ifdef __FreeBSD__ # include # include # include # include # include # if defined(KWSYS_SYS_HAS_IFADDRS_H) # include # define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN # endif #endif #if defined(__OpenBSD__) || defined(__NetBSD__) # include # include #endif #if defined(KWSYS_SYS_HAS_MACHINE_CPU_H) # include #endif #if defined(__DragonFly__) # include #endif #ifdef __APPLE__ # include # include # include # include # include # include # include # include # include # if defined(KWSYS_SYS_HAS_IFADDRS_H) # include # define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN # endif # if !(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__-0 >= 1050) # undef KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE # endif #endif #ifdef __linux # include # include # include # include # if defined(KWSYS_SYS_HAS_IFADDRS_H) # include # if !defined(__LSB_VERSION__) /* LSB has no getifaddrs */ # define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN # endif # endif # if defined(KWSYS_CXX_HAS_RLIMIT64) typedef struct rlimit64 ResourceLimitType; # define GetResourceLimit getrlimit64 # else typedef struct rlimit ResourceLimitType; # define GetResourceLimit getrlimit # endif #elif defined( __hpux ) # include # include # if defined(KWSYS_SYS_HAS_MPCTL_H) # include # endif #endif #ifdef __HAIKU__ # include #endif #if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) # include # if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE) # include # endif # if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) # include # endif #else # undef KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE # undef KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP #endif #include #include #include #include #include // int isdigit(int c); #if defined(KWSYS_USE_LONG_LONG) # if defined(KWSYS_IOS_HAS_OSTREAM_LONG_LONG) # define iostreamLongLong(x) (x) # else # define iostreamLongLong(x) ((long)x) # endif #elif defined(KWSYS_USE___INT64) # if defined(KWSYS_IOS_HAS_OSTREAM___INT64) # define iostreamLongLong(x) (x) # else # define iostreamLongLong(x) ((long)x) # endif #else # error "No Long Long" #endif #if defined(KWSYS_CXX_HAS_ATOLL) # define atoLongLong atoll #else # if defined(KWSYS_CXX_HAS__ATOI64) # define atoLongLong _atoi64 # elif defined(KWSYS_CXX_HAS_ATOL) # define atoLongLong atol # else # define atoLongLong atoi # endif #endif #if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64) #define USE_ASM_INSTRUCTIONS 1 #else #define USE_ASM_INSTRUCTIONS 0 #endif #if defined(_MSC_VER) && (_MSC_VER >= 1400) #include #define USE_CPUID_INTRINSICS 1 #else #define USE_CPUID_INTRINSICS 0 #endif #if USE_ASM_INSTRUCTIONS || USE_CPUID_INTRINSICS || defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID) # define USE_CPUID 1 #else # define USE_CPUID 0 #endif #if USE_CPUID #define CPUID_AWARE_COMPILER /** * call CPUID instruction * * Will return false if the instruction failed. */ static bool call_cpuid(int select, int result[4]) { #if USE_CPUID_INTRINSICS __cpuid(result, select); return true; #else int tmp[4]; #if defined(_MSC_VER) // Use SEH to determine CPUID presence __try { _asm { #ifdef CPUID_AWARE_COMPILER ; we must push/pop the registers <> writes to, as the ; optimiser does not know about <>, and so does not expect ; these registers to change. push eax push ebx push ecx push edx #endif ; <> mov eax, select #ifdef CPUID_AWARE_COMPILER cpuid #else _asm _emit 0x0f _asm _emit 0xa2 #endif mov tmp[0 * TYPE int], eax mov tmp[1 * TYPE int], ebx mov tmp[2 * TYPE int], ecx mov tmp[3 * TYPE int], edx #ifdef CPUID_AWARE_COMPILER pop edx pop ecx pop ebx pop eax #endif } } __except(1) { return false; } memcpy(result, tmp, sizeof(tmp)); #elif defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID) unsigned int a, b, c, d; __asm { mov EAX, select; cpuid mov a, EAX; mov b, EBX; mov c, ECX; mov d, EDX; } result[0] = a; result[1] = b; result[2] = c; result[3] = d; #endif // The cpuid instruction succeeded. return true; #endif } #endif namespace KWSYS_NAMESPACE { template T min(T a, T b){ return a args); //For Haiku OS bool QueryHaikuInfo(); //For QNX bool QueryQNXMemory(); bool QueryQNXProcessor(); //For OpenBSD, FreeBSD, NetBSD, DragonFly bool QueryBSDMemory(); bool QueryBSDProcessor(); //For HP-UX bool QueryHPUXMemory(); bool QueryHPUXProcessor(); //For Microsoft Windows bool QueryWindowsMemory(); //For AIX bool QueryAIXMemory(); bool QueryProcessorBySysconf(); bool QueryProcessor(); // Evaluate the memory information. bool QueryMemoryBySysconf(); bool QueryMemory(); size_t TotalVirtualMemory; size_t AvailableVirtualMemory; size_t TotalPhysicalMemory; size_t AvailablePhysicalMemory; size_t CurrentPositionInFile; // Operating System information bool QueryOSInformation(); std::string OSName; std::string Hostname; std::string OSRelease; std::string OSVersion; std::string OSPlatform; }; SystemInformation::SystemInformation() { this->Implementation = new SystemInformationImplementation; } SystemInformation::~SystemInformation() { delete this->Implementation; } const char * SystemInformation::GetVendorString() { return this->Implementation->GetVendorString(); } const char * SystemInformation::GetVendorID() { return this->Implementation->GetVendorID(); } std::string SystemInformation::GetTypeID() { return this->Implementation->GetTypeID(); } std::string SystemInformation::GetFamilyID() { return this->Implementation->GetFamilyID(); } std::string SystemInformation::GetModelID() { return this->Implementation->GetModelID(); } std::string SystemInformation::GetModelName() { return this->Implementation->GetModelName(); } std::string SystemInformation::GetSteppingCode() { return this->Implementation->GetSteppingCode(); } const char * SystemInformation::GetExtendedProcessorName() { return this->Implementation->GetExtendedProcessorName(); } const char * SystemInformation::GetProcessorSerialNumber() { return this->Implementation->GetProcessorSerialNumber(); } int SystemInformation::GetProcessorCacheSize() { return this->Implementation->GetProcessorCacheSize(); } unsigned int SystemInformation::GetLogicalProcessorsPerPhysical() { return this->Implementation->GetLogicalProcessorsPerPhysical(); } float SystemInformation::GetProcessorClockFrequency() { return this->Implementation->GetProcessorClockFrequency(); } int SystemInformation::GetProcessorAPICID() { return this->Implementation->GetProcessorAPICID(); } int SystemInformation::GetProcessorCacheXSize(long int l) { return this->Implementation->GetProcessorCacheXSize(l); } bool SystemInformation::DoesCPUSupportFeature(long int i) { return this->Implementation->DoesCPUSupportFeature(i); } std::string SystemInformation::GetCPUDescription() { std::ostringstream oss; oss << this->GetNumberOfPhysicalCPU() << " core "; if (this->GetModelName().empty()) { oss << this->GetProcessorClockFrequency() << " MHz " << this->GetVendorString() << " " << this->GetExtendedProcessorName(); } else { oss << this->GetModelName(); } // remove extra spaces std::string tmp=oss.str(); size_t pos; while( (pos=tmp.find(" "))!=std::string::npos) { tmp.replace(pos,2," "); } return tmp; } const char * SystemInformation::GetOSName() { return this->Implementation->GetOSName(); } const char * SystemInformation::GetHostname() { return this->Implementation->GetHostname(); } std::string SystemInformation::GetFullyQualifiedDomainName() { std::string fqdn; this->Implementation->GetFullyQualifiedDomainName(fqdn); return fqdn; } const char * SystemInformation::GetOSRelease() { return this->Implementation->GetOSRelease(); } const char * SystemInformation::GetOSVersion() { return this->Implementation->GetOSVersion(); } const char * SystemInformation::GetOSPlatform() { return this->Implementation->GetOSPlatform(); } int SystemInformation::GetOSIsWindows() { #if defined(_WIN32) return 1; #else return 0; #endif } int SystemInformation::GetOSIsLinux() { #if defined(__linux) return 1; #else return 0; #endif } int SystemInformation::GetOSIsApple() { #if defined(__APPLE__) return 1; #else return 0; #endif } std::string SystemInformation::GetOSDescription() { std::ostringstream oss; oss << this->GetOSName() << " " << this->GetOSRelease() << " " << this->GetOSVersion(); return oss.str(); } bool SystemInformation::Is64Bits() { return this->Implementation->Is64Bits(); } unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu { return this->Implementation->GetNumberOfLogicalCPU(); } unsigned int SystemInformation::GetNumberOfPhysicalCPU() { return this->Implementation->GetNumberOfPhysicalCPU(); } bool SystemInformation::DoesCPUSupportCPUID() { return this->Implementation->DoesCPUSupportCPUID(); } // Retrieve memory information in megabyte. size_t SystemInformation::GetTotalVirtualMemory() { return this->Implementation->GetTotalVirtualMemory(); } size_t SystemInformation::GetAvailableVirtualMemory() { return this->Implementation->GetAvailableVirtualMemory(); } size_t SystemInformation::GetTotalPhysicalMemory() { return this->Implementation->GetTotalPhysicalMemory(); } size_t SystemInformation::GetAvailablePhysicalMemory() { return this->Implementation->GetAvailablePhysicalMemory(); } std::string SystemInformation::GetMemoryDescription( const char *hostLimitEnvVarName, const char *procLimitEnvVarName) { std::ostringstream oss; oss << "Host Total: " << iostreamLongLong(this->GetHostMemoryTotal()) << " KiB, Host Available: " << iostreamLongLong(this->GetHostMemoryAvailable(hostLimitEnvVarName)) << " KiB, Process Available: " << iostreamLongLong( this->GetProcMemoryAvailable(hostLimitEnvVarName,procLimitEnvVarName)) << " KiB"; return oss.str(); } // host memory info in units of KiB. SystemInformation::LongLong SystemInformation::GetHostMemoryTotal() { return this->Implementation->GetHostMemoryTotal(); } SystemInformation::LongLong SystemInformation::GetHostMemoryAvailable(const char *hostLimitEnvVarName) { return this->Implementation->GetHostMemoryAvailable(hostLimitEnvVarName); } SystemInformation::LongLong SystemInformation::GetHostMemoryUsed() { return this->Implementation->GetHostMemoryUsed(); } // process memory info in units of KiB. SystemInformation::LongLong SystemInformation::GetProcMemoryAvailable( const char *hostLimitEnvVarName, const char *procLimitEnvVarName) { return this->Implementation->GetProcMemoryAvailable( hostLimitEnvVarName, procLimitEnvVarName); } SystemInformation::LongLong SystemInformation::GetProcMemoryUsed() { return this->Implementation->GetProcMemoryUsed(); } double SystemInformation::GetLoadAverage() { return this->Implementation->GetLoadAverage(); } SystemInformation::LongLong SystemInformation::GetProcessId() { return this->Implementation->GetProcessId(); } void SystemInformation::SetStackTraceOnError(int enable) { SystemInformationImplementation::SetStackTraceOnError(enable); } std::string SystemInformation::GetProgramStack(int firstFrame, int wholePath) { return SystemInformationImplementation::GetProgramStack(firstFrame, wholePath); } /** Run the different checks */ void SystemInformation::RunCPUCheck() { this->Implementation->RunCPUCheck(); } void SystemInformation::RunOSCheck() { this->Implementation->RunOSCheck(); } void SystemInformation::RunMemoryCheck() { this->Implementation->RunMemoryCheck(); } // -------------------------------------------------------------- // SystemInformationImplementation starts here #define STORE_TLBCACHE_INFO(x,y) x = (x < y) ? y : x #define TLBCACHE_INFO_UNITS (15) #define CLASSICAL_CPU_FREQ_LOOP 10000000 #define RDTSC_INSTRUCTION _asm _emit 0x0f _asm _emit 0x31 #define MMX_FEATURE 0x00000001 #define MMX_PLUS_FEATURE 0x00000002 #define SSE_FEATURE 0x00000004 #define SSE2_FEATURE 0x00000008 #define AMD_3DNOW_FEATURE 0x00000010 #define AMD_3DNOW_PLUS_FEATURE 0x00000020 #define IA64_FEATURE 0x00000040 #define MP_CAPABLE 0x00000080 #define HYPERTHREAD_FEATURE 0x00000100 #define SERIALNUMBER_FEATURE 0x00000200 #define APIC_FEATURE 0x00000400 #define SSE_FP_FEATURE 0x00000800 #define SSE_MMX_FEATURE 0x00001000 #define CMOV_FEATURE 0x00002000 #define MTRR_FEATURE 0x00004000 #define L1CACHE_FEATURE 0x00008000 #define L2CACHE_FEATURE 0x00010000 #define L3CACHE_FEATURE 0x00020000 #define ACPI_FEATURE 0x00040000 #define THERMALMONITOR_FEATURE 0x00080000 #define TEMPSENSEDIODE_FEATURE 0x00100000 #define FREQUENCYID_FEATURE 0x00200000 #define VOLTAGEID_FREQUENCY 0x00400000 // Status Flag #define HT_NOT_CAPABLE 0 #define HT_ENABLED 1 #define HT_DISABLED 2 #define HT_SUPPORTED_NOT_ENABLED 3 #define HT_CANNOT_DETECT 4 // EDX[28] Bit 28 is set if HT is supported #define HT_BIT 0x10000000 // EAX[11:8] Bit 8-11 contains family processor ID. #define FAMILY_ID 0x0F00 #define PENTIUM4_ID 0x0F00 // EAX[23:20] Bit 20-23 contains extended family processor ID #define EXT_FAMILY_ID 0x0F00000 // EBX[23:16] Bit 16-23 in ebx contains the number of logical #define NUM_LOGICAL_BITS 0x00FF0000 // processors per physical processor when execute cpuid with // eax set to 1 // EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique #define INITIAL_APIC_ID_BITS 0xFF000000 // initial APIC ID for the processor this code is running on. // Default value = 0xff if HT is not supported // Hide implementation details in an anonymous namespace. namespace { // ***************************************************************************** #if defined(__linux) || defined(__APPLE__) int LoadLines( FILE *file, std::vector &lines) { // Load each line in the given file into a the vector. int nRead=0; const int bufSize=1024; char buf[bufSize]={'\0'}; while (!feof(file) && !ferror(file)) { errno=0; if (fgets(buf,bufSize,file) == 0) { if (ferror(file) && (errno==EINTR)) { clearerr(file); } continue; } char *pBuf=buf; while(*pBuf) { if (*pBuf=='\n') *pBuf='\0'; pBuf+=1; } lines.push_back(buf); ++nRead; } if (ferror(file)) { return 0; } return nRead; } # if defined(__linux) // ***************************************************************************** int LoadLines( const char *fileName, std::vector &lines) { FILE *file=fopen(fileName,"r"); if (file==0) { return 0; } int nRead=LoadLines(file,lines); fclose(file); return nRead; } # endif // **************************************************************************** template int NameValue( std::vector &lines, std::string name, T &value) { size_t nLines=lines.size(); for (size_t i=0; i> value; return 0; } return -1; } #endif #if defined(__linux) // **************************************************************************** template int GetFieldsFromFile( const char *fileName, const char **fieldNames, T *values) { std::vector fields; if (!LoadLines(fileName,fields)) { return -1; } int i=0; while (fieldNames[i]!=NULL) { int ierr=NameValue(fields,fieldNames[i],values[i]); if (ierr) { return -(i+2); } i+=1; } return 0; } // **************************************************************************** template int GetFieldFromFile( const char *fileName, const char *fieldName, T &value) { const char *fieldNames[2]={fieldName,NULL}; T values[1]={T(0)}; int ierr=GetFieldsFromFile(fileName,fieldNames,values); if (ierr) { return ierr; } value=values[0]; return 0; } #endif // **************************************************************************** #if defined(__APPLE__) template int GetFieldsFromCommand( const char *command, const char **fieldNames, T *values) { FILE *file=popen(command,"r"); if (file==0) { return -1; } std::vector fields; int nl=LoadLines(file,fields); pclose(file); if (nl==0) { return -1; } int i=0; while (fieldNames[i]!=NULL) { int ierr=NameValue(fields,fieldNames[i],values[i]); if (ierr) { return -(i+2); } i+=1; } return 0; } #endif // **************************************************************************** #if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__) void StacktraceSignalHandler( int sigNo, siginfo_t *sigInfo, void * /*sigContext*/) { #if defined(__linux) || defined(__APPLE__) std::ostringstream oss; oss << std::endl << "=========================================================" << std::endl << "Process id " << getpid() << " "; switch (sigNo) { case SIGINT: oss << "Caught SIGINT"; break; case SIGTERM: oss << "Caught SIGTERM"; break; case SIGABRT: oss << "Caught SIGABRT"; break; case SIGFPE: oss << "Caught SIGFPE at " << (sigInfo->si_addr==0?"0x":"") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { # if defined(FPE_INTDIV) case FPE_INTDIV: oss << "integer division by zero"; break; # endif # if defined(FPE_INTOVF) case FPE_INTOVF: oss << "integer overflow"; break; # endif case FPE_FLTDIV: oss << "floating point divide by zero"; break; case FPE_FLTOVF: oss << "floating point overflow"; break; case FPE_FLTUND: oss << "floating point underflow"; break; case FPE_FLTRES: oss << "floating point inexact result"; break; case FPE_FLTINV: oss << "floating point invalid operation"; break; #if defined(FPE_FLTSUB) case FPE_FLTSUB: oss << "floating point subscript out of range"; break; #endif default: oss << "code " << sigInfo->si_code; break; } break; case SIGSEGV: oss << "Caught SIGSEGV at " << (sigInfo->si_addr==0?"0x":"") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { case SEGV_MAPERR: oss << "address not mapped to object"; break; case SEGV_ACCERR: oss << "invalid permission for mapped object"; break; default: oss << "code " << sigInfo->si_code; break; } break; case SIGBUS: oss << "Caught SIGBUS at " << (sigInfo->si_addr==0?"0x":"") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { case BUS_ADRALN: oss << "invalid address alignment"; break; # if defined(BUS_ADRERR) case BUS_ADRERR: oss << "nonexistent physical address"; break; # endif # if defined(BUS_OBJERR) case BUS_OBJERR: oss << "object-specific hardware error"; break; # endif # if defined(BUS_MCEERR_AR) case BUS_MCEERR_AR: oss << "Hardware memory error consumed on a machine check; action required."; break; # endif # if defined(BUS_MCEERR_AO) case BUS_MCEERR_AO: oss << "Hardware memory error detected in process but not consumed; action optional."; break; # endif default: oss << "code " << sigInfo->si_code; break; } break; case SIGILL: oss << "Caught SIGILL at " << (sigInfo->si_addr==0?"0x":"") << sigInfo->si_addr << " "; switch (sigInfo->si_code) { case ILL_ILLOPC: oss << "illegal opcode"; break; # if defined(ILL_ILLOPN) case ILL_ILLOPN: oss << "illegal operand"; break; # endif # if defined(ILL_ILLADR) case ILL_ILLADR: oss << "illegal addressing mode."; break; # endif case ILL_ILLTRP: oss << "illegal trap"; break; case ILL_PRVOPC: oss << "privileged opcode"; break; # if defined(ILL_PRVREG) case ILL_PRVREG: oss << "privileged register"; break; # endif # if defined(ILL_COPROC) case ILL_COPROC: oss << "co-processor error"; break; # endif # if defined(ILL_BADSTK) case ILL_BADSTK: oss << "internal stack error"; break; # endif default: oss << "code " << sigInfo->si_code; break; } break; default: oss << "Caught " << sigNo << " code " << sigInfo->si_code; break; } oss << std::endl << "Program Stack:" << std::endl << SystemInformationImplementation::GetProgramStack(2,0) << "=========================================================" << std::endl; std::cerr << oss.str() << std::endl; // restore the previously registered handlers // and abort SystemInformationImplementation::SetStackTraceOnError(0); abort(); #else // avoid warning C4100 (void)sigNo; (void)sigInfo; #endif } #endif #if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) #define safes(_arg)((_arg)?(_arg):"???") // Description: // A container for symbol properties. Each instance // must be Initialized. class SymbolProperties { public: SymbolProperties(); // Description: // The SymbolProperties instance must be initialized by // passing a stack address. void Initialize(void *address); // Description: // Get the symbol's stack address. void *GetAddress() const { return this->Address; } // Description: // If not set paths will be removed. eg, from a binary // or source file. void SetReportPath(int rp){ this->ReportPath=rp; } // Description: // Set/Get the name of the binary file that the symbol // is found in. void SetBinary(const char *binary) { this->Binary=safes(binary); } std::string GetBinary() const; // Description: // Set the name of the function that the symbol is found in. // If c++ demangling is supported it will be demangled. void SetFunction(const char *function) { this->Function=this->Demangle(function); } std::string GetFunction() const { return this->Function; } // Description: // Set/Get the name of the source file where the symbol // is defined. void SetSourceFile(const char *sourcefile) { this->SourceFile=safes(sourcefile); } std::string GetSourceFile() const { return this->GetFileName(this->SourceFile); } // Description: // Set/Get the line number where the symbol is defined void SetLineNumber(long linenumber){ this->LineNumber=linenumber; } long GetLineNumber() const { return this->LineNumber; } // Description: // Set the address where the biinary image is mapped // into memory. void SetBinaryBaseAddress(void *address) { this->BinaryBaseAddress=address; } private: void *GetRealAddress() const { return (void*)((char*)this->Address-(char*)this->BinaryBaseAddress); } std::string GetFileName(const std::string &path) const; std::string Demangle(const char *symbol) const; private: std::string Binary; void *BinaryBaseAddress; void *Address; std::string SourceFile; std::string Function; long LineNumber; int ReportPath; }; // -------------------------------------------------------------------------- std::ostream &operator<<( std::ostream &os, const SymbolProperties &sp) { #if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) os << std::hex << sp.GetAddress() << " : " << sp.GetFunction() << " [(" << sp.GetBinary() << ") " << sp.GetSourceFile() << ":" << std::dec << sp.GetLineNumber() << "]"; #elif defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) void *addr = sp.GetAddress(); char **syminfo = backtrace_symbols(&addr,1); os << safes(syminfo[0]); free(syminfo); #else (void)os; (void)sp; #endif return os; } // -------------------------------------------------------------------------- SymbolProperties::SymbolProperties() { // not using an initializer list // to avoid some PGI compiler warnings this->SetBinary("???"); this->SetBinaryBaseAddress(NULL); this->Address = NULL; this->SetSourceFile("???"); this->SetFunction("???"); this->SetLineNumber(-1); this->SetReportPath(0); // avoid PGI compiler warnings this->GetRealAddress(); this->GetFunction(); this->GetSourceFile(); this->GetLineNumber(); } // -------------------------------------------------------------------------- std::string SymbolProperties::GetFileName(const std::string &path) const { std::string file(path); if (!this->ReportPath) { size_t at = file.rfind("/"); if (at!=std::string::npos) { file = file.substr(at+1,std::string::npos); } } return file; } // -------------------------------------------------------------------------- std::string SymbolProperties::GetBinary() const { // only linux has proc fs #if defined(__linux__) if (this->Binary=="/proc/self/exe") { std::string binary; char buf[1024]={'\0'}; ssize_t ll=0; if ((ll=readlink("/proc/self/exe",buf,1024))>0) { buf[ll]='\0'; binary=buf; } else { binary="/proc/self/exe"; } return this->GetFileName(binary); } #endif return this->GetFileName(this->Binary); } // -------------------------------------------------------------------------- std::string SymbolProperties::Demangle(const char *symbol) const { std::string result = safes(symbol); #if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE) int status = 0; size_t bufferLen = 1024; char *buffer = (char*)malloc(1024); char *demangledSymbol = abi::__cxa_demangle(symbol, buffer, &bufferLen, &status); if (!status) { result = demangledSymbol; } free(buffer); #else (void)symbol; #endif return result; } // -------------------------------------------------------------------------- void SymbolProperties::Initialize(void *address) { this->Address = address; #if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) // first fallback option can demangle c++ functions Dl_info info; int ierr=dladdr(this->Address,&info); if (ierr && info.dli_sname && info.dli_saddr) { this->SetBinary(info.dli_fname); this->SetFunction(info.dli_sname); } #else // second fallback use builtin backtrace_symbols // to decode the bactrace. #endif } #endif // don't define this class if we're not using it // -------------------------------------------------------------------------- #if defined(_WIN32) || defined(__CYGWIN__) # define KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes #endif #if defined(_MSC_VER) && _MSC_VER < 1310 # undef KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes #endif #if defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes) double calculateCPULoad(unsigned __int64 idleTicks, unsigned __int64 totalTicks) { static double previousLoad = -0.0; static unsigned __int64 previousIdleTicks = 0; static unsigned __int64 previousTotalTicks = 0; unsigned __int64 const idleTicksSinceLastTime = idleTicks - previousIdleTicks; unsigned __int64 const totalTicksSinceLastTime = totalTicks - previousTotalTicks; double load; if (previousTotalTicks == 0 || totalTicksSinceLastTime == 0) { // No new information. Use previous result. load = previousLoad; } else { // Calculate load since last time. load = 1.0 - double(idleTicksSinceLastTime) / totalTicksSinceLastTime; // Smooth if possible. if (previousLoad > 0) { load = 0.25 * load + 0.75 * previousLoad; } } previousLoad = load; previousIdleTicks = idleTicks; previousTotalTicks = totalTicks; return load; } unsigned __int64 fileTimeToUInt64(FILETIME const& ft) { LARGE_INTEGER out; out.HighPart = ft.dwHighDateTime; out.LowPart = ft.dwLowDateTime; return out.QuadPart; } #endif } // anonymous namespace SystemInformationImplementation::SystemInformationImplementation() { this->TotalVirtualMemory = 0; this->AvailableVirtualMemory = 0; this->TotalPhysicalMemory = 0; this->AvailablePhysicalMemory = 0; this->CurrentPositionInFile = 0; this->ChipManufacturer = UnknownManufacturer; memset(&this->Features, 0, sizeof(CPUFeatures)); this->ChipID.Type = 0; this->ChipID.Family = 0; this->ChipID.Model = 0; this->ChipID.Revision = 0; this->ChipID.ExtendedFamily = 0; this->ChipID.ExtendedModel = 0; this->CPUSpeedInMHz = 0; this->NumberOfLogicalCPU = 0; this->NumberOfPhysicalCPU = 0; this->OSName = ""; this->Hostname = ""; this->OSRelease = ""; this->OSVersion = ""; this->OSPlatform = ""; } SystemInformationImplementation::~SystemInformationImplementation() { } void SystemInformationImplementation::RunCPUCheck() { #ifdef WIN32 // Check to see if this processor supports CPUID. bool supportsCPUID = DoesCPUSupportCPUID(); if (supportsCPUID) { // Retrieve the CPU details. RetrieveCPUIdentity(); this->FindManufacturer(); RetrieveCPUFeatures(); } // These two may be called without support for the CPUID instruction. // (But if the instruction is there, they should be called *after* // the above call to RetrieveCPUIdentity... that's why the two if // blocks exist with the same "if (supportsCPUID)" logic... // if (!RetrieveCPUClockSpeed()) { RetrieveClassicalCPUClockSpeed(); } if (supportsCPUID) { // Retrieve cache information. if (!RetrieveCPUCacheDetails()) { RetrieveClassicalCPUCacheDetails(); } // Retrieve the extended CPU details. if (!RetrieveExtendedCPUIdentity()) { RetrieveClassicalCPUIdentity(); } RetrieveExtendedCPUFeatures(); RetrieveCPUPowerManagement(); // Now attempt to retrieve the serial number (if possible). RetrieveProcessorSerialNumber(); } this->CPUCount(); #elif defined(__APPLE__) this->ParseSysCtl(); #elif defined (__SVR4) && defined (__sun) this->QuerySolarisProcessor(); #elif defined(__HAIKU__) this->QueryHaikuInfo(); #elif defined(__QNX__) this->QueryQNXProcessor(); #elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) this->QueryBSDProcessor(); #elif defined(__hpux) this->QueryHPUXProcessor(); #elif defined(__linux) || defined(__CYGWIN__) this->RetreiveInformationFromCpuInfoFile(); #else this->QueryProcessor(); #endif } void SystemInformationImplementation::RunOSCheck() { this->QueryOSInformation(); } void SystemInformationImplementation::RunMemoryCheck() { #if defined(__APPLE__) this->ParseSysCtl(); #elif defined (__SVR4) && defined (__sun) this->QuerySolarisMemory(); #elif defined(__HAIKU__) this->QueryHaikuInfo(); #elif defined(__QNX__) this->QueryQNXMemory(); #elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) this->QueryBSDMemory(); #elif defined(__CYGWIN__) this->QueryCygwinMemory(); #elif defined(_WIN32) this->QueryWindowsMemory(); #elif defined(__hpux) this->QueryHPUXMemory(); #elif defined(__linux) this->QueryLinuxMemory(); #elif defined(_AIX) this->QueryAIXMemory(); #else this->QueryMemory(); #endif } /** Get the vendor string */ const char * SystemInformationImplementation::GetVendorString() { return this->ChipID.Vendor.c_str(); } /** Get the OS Name */ const char * SystemInformationImplementation::GetOSName() { return this->OSName.c_str(); } /** Get the hostname */ const char* SystemInformationImplementation::GetHostname() { if (this->Hostname.empty()) { this->Hostname="localhost"; #if defined(_WIN32) WORD wVersionRequested; WSADATA wsaData; char name[255]; wVersionRequested = MAKEWORD(2,0); if ( WSAStartup( wVersionRequested, &wsaData ) == 0 ) { gethostname(name,sizeof(name)); WSACleanup( ); } this->Hostname = name; #else struct utsname unameInfo; int errorFlag = uname(&unameInfo); if(errorFlag == 0) { this->Hostname = unameInfo.nodename; } #endif } return this->Hostname.c_str(); } /** Get the FQDN */ int SystemInformationImplementation::GetFullyQualifiedDomainName( std::string &fqdn) { // in the event of absolute failure return localhost. fqdn="localhost"; #if defined(_WIN32) int ierr; // TODO - a more robust implementation for windows, see comments // in unix implementation. WSADATA wsaData; WORD ver=MAKEWORD(2,0); ierr=WSAStartup(ver,&wsaData); if (ierr) { return -1; } char base[256]={'\0'}; ierr=gethostname(base,256); if (ierr) { WSACleanup(); return -2; } fqdn=base; HOSTENT *hent=gethostbyname(base); if (hent) { fqdn=hent->h_name; } WSACleanup(); return 0; #elif defined(KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN) // gethostname typical returns an alias for loopback interface // we want the fully qualified domain name. Because there are // any number of interfaces on this system we look for the // first of these that contains the name returned by gethostname // and is longer. failing that we return gethostname and indicate // with a failure code. Return of a failure code is not necessarilly // an indication of an error. for instance gethostname may return // the fully qualified domain name, or there may not be one if the // system lives on a private network such as in the case of a cluster // node. int ierr=0; char base[NI_MAXHOST]; ierr=gethostname(base,NI_MAXHOST); if (ierr) { return -1; } size_t baseSize=strlen(base); fqdn=base; struct ifaddrs *ifas; struct ifaddrs *ifa; ierr=getifaddrs(&ifas); if (ierr) { return -2; } for (ifa=ifas; ifa!=NULL; ifa=ifa->ifa_next) { int fam = ifa->ifa_addr? ifa->ifa_addr->sa_family : -1; if ((fam==AF_INET) || (fam==AF_INET6)) { char host[NI_MAXHOST]={'\0'}; const size_t addrlen = (fam==AF_INET?sizeof(struct sockaddr_in):sizeof(struct sockaddr_in6)); ierr=getnameinfo( ifa->ifa_addr, static_cast(addrlen), host, NI_MAXHOST, NULL, 0, NI_NAMEREQD); if (ierr) { // don't report the failure now since we may succeed on another // interface. If all attempts fail then return the failure code. ierr=-3; continue; } std::string candidate=host; if ((candidate.find(base)!=std::string::npos) && baseSizeGetHostname(); return -1; #endif } /** Get the OS release */ const char* SystemInformationImplementation::GetOSRelease() { return this->OSRelease.c_str(); } /** Get the OS version */ const char* SystemInformationImplementation::GetOSVersion() { return this->OSVersion.c_str(); } /** Get the OS platform */ const char* SystemInformationImplementation::GetOSPlatform() { return this->OSPlatform.c_str(); } /** Get the vendor ID */ const char * SystemInformationImplementation::GetVendorID() { // Return the vendor ID. switch (this->ChipManufacturer) { case Intel: return "Intel Corporation"; case AMD: return "Advanced Micro Devices"; case NSC: return "National Semiconductor"; case Cyrix: return "Cyrix Corp., VIA Inc."; case NexGen: return "NexGen Inc., Advanced Micro Devices"; case IDT: return "IDT\\Centaur, Via Inc."; case UMC: return "United Microelectronics Corp."; case Rise: return "Rise"; case Transmeta: return "Transmeta"; case Sun: return "Sun Microelectronics"; case IBM: return "IBM"; case Motorola: return "Motorola"; case HP: return "Hewlett-Packard"; case UnknownManufacturer: default: return "Unknown Manufacturer"; } } /** Return the type ID of the CPU */ std::string SystemInformationImplementation::GetTypeID() { std::ostringstream str; str << this->ChipID.Type; return str.str(); } /** Return the family of the CPU present */ std::string SystemInformationImplementation::GetFamilyID() { std::ostringstream str; str << this->ChipID.Family; return str.str(); } // Return the model of CPU present */ std::string SystemInformationImplementation::GetModelID() { std::ostringstream str; str << this->ChipID.Model; return str.str(); } // Return the model name of CPU present */ std::string SystemInformationImplementation::GetModelName() { return this->ChipID.ModelName; } /** Return the stepping code of the CPU present. */ std::string SystemInformationImplementation::GetSteppingCode() { std::ostringstream str; str << this->ChipID.Revision; return str.str(); } /** Return the stepping code of the CPU present. */ const char * SystemInformationImplementation::GetExtendedProcessorName() { return this->ChipID.ProcessorName.c_str(); } /** Return the serial number of the processor * in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */ const char * SystemInformationImplementation::GetProcessorSerialNumber() { return this->ChipID.SerialNumber.c_str(); } /** Return the logical processors per physical */ unsigned int SystemInformationImplementation::GetLogicalProcessorsPerPhysical() { return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical; } /** Return the processor clock frequency. */ float SystemInformationImplementation::GetProcessorClockFrequency() { return this->CPUSpeedInMHz; } /** Return the APIC ID. */ int SystemInformationImplementation::GetProcessorAPICID() { return this->Features.ExtendedFeatures.APIC_ID; } /** Return the L1 cache size. */ int SystemInformationImplementation::GetProcessorCacheSize() { return this->Features.L1CacheSize; } /** Return the chosen cache size. */ int SystemInformationImplementation::GetProcessorCacheXSize(long int dwCacheID) { switch (dwCacheID) { case L1CACHE_FEATURE: return this->Features.L1CacheSize; case L2CACHE_FEATURE: return this->Features.L2CacheSize; case L3CACHE_FEATURE: return this->Features.L3CacheSize; } return -1; } bool SystemInformationImplementation::DoesCPUSupportFeature(long int dwFeature) { bool bHasFeature = false; // Check for MMX instructions. if (((dwFeature & MMX_FEATURE) != 0) && this->Features.HasMMX) bHasFeature = true; // Check for MMX+ instructions. if (((dwFeature & MMX_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.HasMMXPlus) bHasFeature = true; // Check for SSE FP instructions. if (((dwFeature & SSE_FEATURE) != 0) && this->Features.HasSSE) bHasFeature = true; // Check for SSE FP instructions. if (((dwFeature & SSE_FP_FEATURE) != 0) && this->Features.HasSSEFP) bHasFeature = true; // Check for SSE MMX instructions. if (((dwFeature & SSE_MMX_FEATURE) != 0) && this->Features.ExtendedFeatures.HasSSEMMX) bHasFeature = true; // Check for SSE2 instructions. if (((dwFeature & SSE2_FEATURE) != 0) && this->Features.HasSSE2) bHasFeature = true; // Check for 3DNow! instructions. if (((dwFeature & AMD_3DNOW_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNow) bHasFeature = true; // Check for 3DNow+ instructions. if (((dwFeature & AMD_3DNOW_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNowPlus) bHasFeature = true; // Check for IA64 instructions. if (((dwFeature & IA64_FEATURE) != 0) && this->Features.HasIA64) bHasFeature = true; // Check for MP capable. if (((dwFeature & MP_CAPABLE) != 0) && this->Features.ExtendedFeatures.SupportsMP) bHasFeature = true; // Check for a serial number for the processor. if (((dwFeature & SERIALNUMBER_FEATURE) != 0) && this->Features.HasSerial) bHasFeature = true; // Check for a local APIC in the processor. if (((dwFeature & APIC_FEATURE) != 0) && this->Features.HasAPIC) bHasFeature = true; // Check for CMOV instructions. if (((dwFeature & CMOV_FEATURE) != 0) && this->Features.HasCMOV) bHasFeature = true; // Check for MTRR instructions. if (((dwFeature & MTRR_FEATURE) != 0) && this->Features.HasMTRR) bHasFeature = true; // Check for L1 cache size. if (((dwFeature & L1CACHE_FEATURE) != 0) && (this->Features.L1CacheSize != -1)) bHasFeature = true; // Check for L2 cache size. if (((dwFeature & L2CACHE_FEATURE) != 0) && (this->Features.L2CacheSize != -1)) bHasFeature = true; // Check for L3 cache size. if (((dwFeature & L3CACHE_FEATURE) != 0) && (this->Features.L3CacheSize != -1)) bHasFeature = true; // Check for ACPI capability. if (((dwFeature & ACPI_FEATURE) != 0) && this->Features.HasACPI) bHasFeature = true; // Check for thermal monitor support. if (((dwFeature & THERMALMONITOR_FEATURE) != 0) && this->Features.HasThermal) bHasFeature = true; // Check for temperature sensing diode support. if (((dwFeature & TEMPSENSEDIODE_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode) bHasFeature = true; // Check for frequency ID support. if (((dwFeature & FREQUENCYID_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID) bHasFeature = true; // Check for voltage ID support. if (((dwFeature & VOLTAGEID_FREQUENCY) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasVoltageID) bHasFeature = true; return bHasFeature; } void SystemInformationImplementation::Delay(unsigned int uiMS) { #ifdef WIN32 LARGE_INTEGER Frequency, StartCounter, EndCounter; __int64 x; // Get the frequency of the high performance counter. if (!QueryPerformanceFrequency (&Frequency)) return; x = Frequency.QuadPart / 1000 * uiMS; // Get the starting position of the counter. QueryPerformanceCounter (&StartCounter); do { // Get the ending position of the counter. QueryPerformanceCounter (&EndCounter); } while (EndCounter.QuadPart - StartCounter.QuadPart < x); #endif (void)uiMS; } bool SystemInformationImplementation::DoesCPUSupportCPUID() { #if USE_CPUID int dummy[4] = { 0, 0, 0, 0 }; #if USE_ASM_INSTRUCTIONS return call_cpuid(0, dummy); #else call_cpuid(0, dummy); return dummy[0] || dummy[1] || dummy[2] || dummy[3]; #endif #else // Assume no cpuid instruction. return false; #endif } bool SystemInformationImplementation::RetrieveCPUFeatures() { #if USE_CPUID int cpuinfo[4] = { 0, 0, 0, 0 }; if (!call_cpuid(1, cpuinfo)) { return false; } // Retrieve the features of CPU present. this->Features.HasFPU = ((cpuinfo[3] & 0x00000001) != 0); // FPU Present --> Bit 0 this->Features.HasTSC = ((cpuinfo[3] & 0x00000010) != 0); // TSC Present --> Bit 4 this->Features.HasAPIC = ((cpuinfo[3] & 0x00000200) != 0); // APIC Present --> Bit 9 this->Features.HasMTRR = ((cpuinfo[3] & 0x00001000) != 0); // MTRR Present --> Bit 12 this->Features.HasCMOV = ((cpuinfo[3] & 0x00008000) != 0); // CMOV Present --> Bit 15 this->Features.HasSerial = ((cpuinfo[3] & 0x00040000) != 0); // Serial Present --> Bit 18 this->Features.HasACPI = ((cpuinfo[3] & 0x00400000) != 0); // ACPI Capable --> Bit 22 this->Features.HasMMX = ((cpuinfo[3] & 0x00800000) != 0); // MMX Present --> Bit 23 this->Features.HasSSE = ((cpuinfo[3] & 0x02000000) != 0); // SSE Present --> Bit 25 this->Features.HasSSE2 = ((cpuinfo[3] & 0x04000000) != 0); // SSE2 Present --> Bit 26 this->Features.HasThermal = ((cpuinfo[3] & 0x20000000) != 0); // Thermal Monitor Present --> Bit 29 this->Features.HasIA64 = ((cpuinfo[3] & 0x40000000) != 0); // IA64 Present --> Bit 30 #if USE_ASM_INSTRUCTIONS // Retrieve extended SSE capabilities if SSE is available. if (this->Features.HasSSE) { // Attempt to __try some SSE FP instructions. __try { // Perform: orps xmm0, xmm0 _asm { _emit 0x0f _emit 0x56 _emit 0xc0 } // SSE FP capable processor. this->Features.HasSSEFP = true; } __except(1) { // bad instruction - processor or OS cannot handle SSE FP. this->Features.HasSSEFP = false; } } else { // Set the advanced SSE capabilities to not available. this->Features.HasSSEFP = false; } #else this->Features.HasSSEFP = false; #endif // Retrieve Intel specific extended features. if (this->ChipManufacturer == Intel) { this->Features.ExtendedFeatures.SupportsHyperthreading = ((cpuinfo[3] & 0x10000000) != 0); // Intel specific: Hyperthreading --> Bit 28 this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = (this->Features.ExtendedFeatures.SupportsHyperthreading) ? ((cpuinfo[1] & 0x00FF0000) >> 16) : 1; if ((this->Features.ExtendedFeatures.SupportsHyperthreading) && (this->Features.HasAPIC)) { // Retrieve APIC information if there is one present. this->Features.ExtendedFeatures.APIC_ID = ((cpuinfo[1] & 0xFF000000) >> 24); } } return true; #else return false; #endif } /** Find the manufacturer given the vendor id */ void SystemInformationImplementation::FindManufacturer(const std::string& family) { if (this->ChipID.Vendor == "GenuineIntel") this->ChipManufacturer = Intel; // Intel Corp. else if (this->ChipID.Vendor == "UMC UMC UMC ") this->ChipManufacturer = UMC; // United Microelectronics Corp. else if (this->ChipID.Vendor == "AuthenticAMD") this->ChipManufacturer = AMD; // Advanced Micro Devices else if (this->ChipID.Vendor == "AMD ISBETTER") this->ChipManufacturer = AMD; // Advanced Micro Devices (1994) else if (this->ChipID.Vendor == "CyrixInstead") this->ChipManufacturer = Cyrix; // Cyrix Corp., VIA Inc. else if (this->ChipID.Vendor == "NexGenDriven") this->ChipManufacturer = NexGen; // NexGen Inc. (now AMD) else if (this->ChipID.Vendor == "CentaurHauls") this->ChipManufacturer = IDT; // IDT/Centaur (now VIA) else if (this->ChipID.Vendor == "RiseRiseRise") this->ChipManufacturer = Rise; // Rise else if (this->ChipID.Vendor == "GenuineTMx86") this->ChipManufacturer = Transmeta; // Transmeta else if (this->ChipID.Vendor == "TransmetaCPU") this->ChipManufacturer = Transmeta; // Transmeta else if (this->ChipID.Vendor == "Geode By NSC") this->ChipManufacturer = NSC; // National Semiconductor else if (this->ChipID.Vendor == "Sun") this->ChipManufacturer = Sun; // Sun Microelectronics else if (this->ChipID.Vendor == "IBM") this->ChipManufacturer = IBM; // IBM Microelectronics else if (this->ChipID.Vendor == "Hewlett-Packard") this->ChipManufacturer = HP; // Hewlett-Packard else if (this->ChipID.Vendor == "Motorola") this->ChipManufacturer = Motorola; // Motorola Microelectronics else if (family.substr(0, 7) == "PA-RISC") this->ChipManufacturer = HP; // Hewlett-Packard else this->ChipManufacturer = UnknownManufacturer; // Unknown manufacturer } /** */ bool SystemInformationImplementation::RetrieveCPUIdentity() { #if USE_CPUID int localCPUVendor[4]; int localCPUSignature[4]; if (!call_cpuid(0, localCPUVendor)) { return false; } if (!call_cpuid(1, localCPUSignature)) { return false; } // Process the returned information. // ; eax = 0 --> eax: maximum value of CPUID instruction. // ; ebx: part 1 of 3; CPU signature. // ; edx: part 2 of 3; CPU signature. // ; ecx: part 3 of 3; CPU signature. char vbuf[13]; memcpy (&(vbuf[0]), &(localCPUVendor[1]), sizeof (int)); memcpy (&(vbuf[4]), &(localCPUVendor[3]), sizeof (int)); memcpy (&(vbuf[8]), &(localCPUVendor[2]), sizeof (int)); vbuf[12] = '\0'; this->ChipID.Vendor = vbuf; // Retrieve the family of CPU present. // ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision // ; ebx: 31..24 - default APIC ID, 23..16 - logical processor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID // ; edx: CPU feature flags this->ChipID.ExtendedFamily = ((localCPUSignature[0] & 0x0FF00000) >> 20); // Bits 27..20 Used this->ChipID.ExtendedModel = ((localCPUSignature[0] & 0x000F0000) >> 16); // Bits 19..16 Used this->ChipID.Type = ((localCPUSignature[0] & 0x0000F000) >> 12); // Bits 15..12 Used this->ChipID.Family = ((localCPUSignature[0] & 0x00000F00) >> 8); // Bits 11..8 Used this->ChipID.Model = ((localCPUSignature[0] & 0x000000F0) >> 4); // Bits 7..4 Used this->ChipID.Revision = ((localCPUSignature[0] & 0x0000000F) >> 0); // Bits 3..0 Used return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUCacheDetails() { #if USE_CPUID int L1Cache[4] = { 0, 0, 0, 0 }; int L2Cache[4] = { 0, 0, 0, 0 }; // Check to see if what we are about to do is supported... if (RetrieveCPUExtendedLevelSupport (0x80000005)) { if (!call_cpuid(0x80000005, L1Cache)) { return false; } // Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as data cache size from edx: bits 31..24. this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24); this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24); } else { // Store -1 to indicate the cache could not be queried. this->Features.L1CacheSize = -1; } // Check to see if what we are about to do is supported... if (RetrieveCPUExtendedLevelSupport (0x80000006)) { if (!call_cpuid(0x80000006, L2Cache)) { return false; } // Save the L2 unified cache size (in KB) from ecx: bits 31..16. this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16); } else { // Store -1 to indicate the cache could not be queried. this->Features.L2CacheSize = -1; } // Define L3 as being not present as we cannot test for it. this->Features.L3CacheSize = -1; #endif // Return failure if we cannot detect either cache with this method. return ((this->Features.L1CacheSize == -1) && (this->Features.L2CacheSize == -1)) ? false : true; } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails() { #if USE_CPUID int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1, L2Unified = -1, L3Unified = -1; int TLBCacheData[4] = { 0, 0, 0, 0 }; int TLBPassCounter = 0; int TLBCacheUnit = 0; do { if (!call_cpuid(2, TLBCacheData)) { return false; } int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16); (void)bob; // Process the returned TLB and cache information. for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter ++) { // First of all - decide which unit we are dealing with. switch (nCounter) { // eax: bits 8..15 : bits 16..23 : bits 24..31 case 0: TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8); break; case 1: TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16); break; case 2: TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24); break; // ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 3: TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0); break; case 4: TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8); break; case 5: TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16); break; case 6: TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24); break; // ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 7: TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0); break; case 8: TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8); break; case 9: TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16); break; case 10: TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24); break; // edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31 case 11: TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0); break; case 12: TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8); break; case 13: TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16); break; case 14: TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24); break; // Default case - an error has occured. default: return false; } // Now process the resulting unit to see what it means.... switch (TLBCacheUnit) { case 0x00: break; case 0x01: STORE_TLBCACHE_INFO (TLBCode, 4); break; case 0x02: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x03: STORE_TLBCACHE_INFO (TLBData, 4); break; case 0x04: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x06: STORE_TLBCACHE_INFO (L1Code, 8); break; case 0x08: STORE_TLBCACHE_INFO (L1Code, 16); break; case 0x0a: STORE_TLBCACHE_INFO (L1Data, 8); break; case 0x0c: STORE_TLBCACHE_INFO (L1Data, 16); break; case 0x10: STORE_TLBCACHE_INFO (L1Data, 16); break; // <-- FIXME: IA-64 Only case 0x15: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only case 0x1a: STORE_TLBCACHE_INFO (L2Unified, 96); break; // <-- FIXME: IA-64 Only case 0x22: STORE_TLBCACHE_INFO (L3Unified, 512); break; case 0x23: STORE_TLBCACHE_INFO (L3Unified, 1024); break; case 0x25: STORE_TLBCACHE_INFO (L3Unified, 2048); break; case 0x29: STORE_TLBCACHE_INFO (L3Unified, 4096); break; case 0x39: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x3c: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x40: STORE_TLBCACHE_INFO (L2Unified, 0); break; // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4 core). case 0x41: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x42: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x43: STORE_TLBCACHE_INFO (L2Unified, 512); break; case 0x44: STORE_TLBCACHE_INFO (L2Unified, 1024); break; case 0x45: STORE_TLBCACHE_INFO (L2Unified, 2048); break; case 0x50: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x51: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x52: STORE_TLBCACHE_INFO (TLBCode, 4096); break; case 0x5b: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x5c: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x5d: STORE_TLBCACHE_INFO (TLBData, 4096); break; case 0x66: STORE_TLBCACHE_INFO (L1Data, 8); break; case 0x67: STORE_TLBCACHE_INFO (L1Data, 16); break; case 0x68: STORE_TLBCACHE_INFO (L1Data, 32); break; case 0x70: STORE_TLBCACHE_INFO (L1Trace, 12); break; case 0x71: STORE_TLBCACHE_INFO (L1Trace, 16); break; case 0x72: STORE_TLBCACHE_INFO (L1Trace, 32); break; case 0x77: STORE_TLBCACHE_INFO (L1Code, 16); break; // <-- FIXME: IA-64 Only case 0x79: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x7a: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x7b: STORE_TLBCACHE_INFO (L2Unified, 512); break; case 0x7c: STORE_TLBCACHE_INFO (L2Unified, 1024); break; case 0x7e: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x81: STORE_TLBCACHE_INFO (L2Unified, 128); break; case 0x82: STORE_TLBCACHE_INFO (L2Unified, 256); break; case 0x83: STORE_TLBCACHE_INFO (L2Unified, 512); break; case 0x84: STORE_TLBCACHE_INFO (L2Unified, 1024); break; case 0x85: STORE_TLBCACHE_INFO (L2Unified, 2048); break; case 0x88: STORE_TLBCACHE_INFO (L3Unified, 2048); break; // <-- FIXME: IA-64 Only case 0x89: STORE_TLBCACHE_INFO (L3Unified, 4096); break; // <-- FIXME: IA-64 Only case 0x8a: STORE_TLBCACHE_INFO (L3Unified, 8192); break; // <-- FIXME: IA-64 Only case 0x8d: STORE_TLBCACHE_INFO (L3Unified, 3096); break; // <-- FIXME: IA-64 Only case 0x90: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only case 0x96: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only case 0x9b: STORE_TLBCACHE_INFO (TLBCode, 262144); break; // <-- FIXME: IA-64 Only // Default case - an error has occured. default: return false; } } // Increment the TLB pass counter. TLBPassCounter ++; } while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter); // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1)) { this->Features.L1CacheSize = -1; } else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1)) { this->Features.L1CacheSize = L1Trace; } else if ((L1Code != -1) && (L1Data == -1)) { this->Features.L1CacheSize = L1Code; } else if ((L1Code == -1) && (L1Data != -1)) { this->Features.L1CacheSize = L1Data; } else if ((L1Code != -1) && (L1Data != -1)) { this->Features.L1CacheSize = L1Code + L1Data; } else { this->Features.L1CacheSize = -1; } // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if (L2Unified == -1) { this->Features.L2CacheSize = -1; } else { this->Features.L2CacheSize = L2Unified; } // Ok - we now have the maximum TLB, L1, L2, and L3 sizes... if (L3Unified == -1) { this->Features.L3CacheSize = -1; } else { this->Features.L3CacheSize = L3Unified; } return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUClockSpeed() { bool retrieved = false; #if defined(_WIN32) unsigned int uiRepetitions = 1; unsigned int uiMSecPerRepetition = 50; __int64 i64Total = 0; __int64 i64Overhead = 0; // Check if the TSC implementation works at all if (this->Features.HasTSC && GetCyclesDifference(SystemInformationImplementation::Delay, uiMSecPerRepetition) > 0) { for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter ++) { i64Total += GetCyclesDifference (SystemInformationImplementation::Delay, uiMSecPerRepetition); i64Overhead += GetCyclesDifference (SystemInformationImplementation::DelayOverhead, uiMSecPerRepetition); } // Calculate the MHz speed. i64Total -= i64Overhead; i64Total /= uiRepetitions; i64Total /= uiMSecPerRepetition; i64Total /= 1000; // Save the CPU speed. this->CPUSpeedInMHz = (float) i64Total; retrieved = true; } // If RDTSC is not supported, we fallback to trying to read this value // from the registry: if (!retrieved) { HKEY hKey = NULL; LONG err = RegOpenKeyExW(HKEY_LOCAL_MACHINE, L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0, KEY_READ, &hKey); if (ERROR_SUCCESS == err) { DWORD dwType = 0; DWORD data = 0; DWORD dwSize = sizeof(DWORD); err = RegQueryValueExW(hKey, L"~MHz", 0, &dwType, (LPBYTE) &data, &dwSize); if (ERROR_SUCCESS == err) { this->CPUSpeedInMHz = (float) data; retrieved = true; } RegCloseKey(hKey); hKey = NULL; } } #endif return retrieved; } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed() { #if USE_ASM_INSTRUCTIONS LARGE_INTEGER liStart, liEnd, liCountsPerSecond; double dFrequency, dDifference; // Attempt to get a starting tick count. QueryPerformanceCounter (&liStart); __try { _asm { mov eax, 0x80000000 mov ebx, CLASSICAL_CPU_FREQ_LOOP Timer_Loop: bsf ecx,eax dec ebx jnz Timer_Loop } } __except(1) { return false; } // Attempt to get a starting tick count. QueryPerformanceCounter (&liEnd); // Get the difference... NB: This is in seconds.... QueryPerformanceFrequency (&liCountsPerSecond); dDifference = (((double) liEnd.QuadPart - (double) liStart.QuadPart) / (double) liCountsPerSecond.QuadPart); // Calculate the clock speed. if (this->ChipID.Family == 3) { // 80386 processors.... Loop time is 115 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1000000); } else if (this->ChipID.Family == 4) { // 80486 processors.... Loop time is 47 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1000000); } else if (this->ChipID.Family == 5) { // Pentium processors.... Loop time is 43 cycles! dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1000000); } // Save the clock speed. this->Features.CPUSpeed = (int) dFrequency; return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(int CPULevelToCheck) { int cpuinfo[4] = { 0, 0, 0, 0 }; // The extended CPUID is supported by various vendors starting with the following CPU models: // // Manufacturer & Chip Name | Family Model Revision // // AMD K6, K6-2 | 5 6 x // Cyrix GXm, Cyrix III "Joshua" | 5 4 x // IDT C6-2 | 5 8 x // VIA Cyrix III | 6 5 x // Transmeta Crusoe | 5 x x // Intel Pentium 4 | f x x // // We check to see if a supported processor is present... if (this->ChipManufacturer == AMD) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6)) return false; } else if (this->ChipManufacturer == Cyrix) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4)) return false; if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5)) return false; } else if (this->ChipManufacturer == IDT) { if (this->ChipID.Family < 5) return false; if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8)) return false; } else if (this->ChipManufacturer == Transmeta) { if (this->ChipID.Family < 5) return false; } else if (this->ChipManufacturer == Intel) { if (this->ChipID.Family < 0xf) { return false; } } #if USE_CPUID if (!call_cpuid(0x80000000, cpuinfo)) { return false; } #endif // Now we have to check the level wanted vs level returned... int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF); int nLevelReturn = (cpuinfo[0] & 0x7FFFFFFF); // Check to see if the level provided is supported... if (nLevelWanted > nLevelReturn) { return false; } return true; } /** */ bool SystemInformationImplementation::RetrieveExtendedCPUFeatures() { // Check that we are not using an Intel processor as it does not support this. if (this->ChipManufacturer == Intel) { return false; } // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000001))) { return false; } #if USE_CPUID int localCPUExtendedFeatures[4] = { 0, 0, 0, 0 }; if (!call_cpuid(0x80000001, localCPUExtendedFeatures)) { return false; } // Retrieve the extended features of CPU present. this->Features.ExtendedFeatures.Has3DNow = ((localCPUExtendedFeatures[3] & 0x80000000) != 0); // 3DNow Present --> Bit 31. this->Features.ExtendedFeatures.Has3DNowPlus = ((localCPUExtendedFeatures[3] & 0x40000000) != 0); // 3DNow+ Present -- > Bit 30. this->Features.ExtendedFeatures.HasSSEMMX = ((localCPUExtendedFeatures[3] & 0x00400000) != 0); // SSE MMX Present --> Bit 22. this->Features.ExtendedFeatures.SupportsMP = ((localCPUExtendedFeatures[3] & 0x00080000) != 0); // MP Capable -- > Bit 19. // Retrieve AMD specific extended features. if (this->ChipManufacturer == AMD) { this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x00400000) != 0); // AMD specific: MMX-SSE --> Bit 22 } // Retrieve Cyrix specific extended features. if (this->ChipManufacturer == Cyrix) { this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x01000000) != 0); // Cyrix specific: Extended MMX --> Bit 24 } return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveProcessorSerialNumber() { // Check to see if the processor supports the processor serial number. if (!this->Features.HasSerial) { return false; } #if USE_CPUID int SerialNumber[4]; if (!call_cpuid(3, SerialNumber)) { return false; } // Process the returned information. // ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB: Transmeta only ?!? // ; ecx: middle 32 bits are the processor signature bits // ; edx: bottom 32 bits are the processor signature bits char sn[128]; sprintf (sn, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x", ((SerialNumber[1] & 0xff000000) >> 24), ((SerialNumber[1] & 0x00ff0000) >> 16), ((SerialNumber[1] & 0x0000ff00) >> 8), ((SerialNumber[1] & 0x000000ff) >> 0), ((SerialNumber[2] & 0xff000000) >> 24), ((SerialNumber[2] & 0x00ff0000) >> 16), ((SerialNumber[2] & 0x0000ff00) >> 8), ((SerialNumber[2] & 0x000000ff) >> 0), ((SerialNumber[3] & 0xff000000) >> 24), ((SerialNumber[3] & 0x00ff0000) >> 16), ((SerialNumber[3] & 0x0000ff00) >> 8), ((SerialNumber[3] & 0x000000ff) >> 0)); this->ChipID.SerialNumber = sn; return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveCPUPowerManagement() { // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000007))) { this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false; this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false; this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false; return false; } #if USE_CPUID int localCPUPowerManagement[4] = { 0, 0, 0, 0 }; if (!call_cpuid(0x80000007, localCPUPowerManagement)) { return false; } // Check for the power management capabilities of the CPU. this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = ((localCPUPowerManagement[3] & 0x00000001) != 0); this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = ((localCPUPowerManagement[3] & 0x00000002) != 0); this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = ((localCPUPowerManagement[3] & 0x00000004) != 0); return true; #else return false; #endif } #if USE_CPUID // Used only in USE_CPUID implementation below. static void SystemInformationStripLeadingSpace(std::string& str) { // Because some manufacturers have leading white space - we have to post-process the name. std::string::size_type pos = str.find_first_not_of(" "); if(pos != std::string::npos) { str = str.substr(pos); } } #endif /** */ bool SystemInformationImplementation::RetrieveExtendedCPUIdentity() { // Check to see if what we are about to do is supported... if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000002))) return false; if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000003))) return false; if (!RetrieveCPUExtendedLevelSupport(static_cast(0x80000004))) return false; #if USE_CPUID int CPUExtendedIdentity[12]; if (!call_cpuid(0x80000002, CPUExtendedIdentity)) { return false; } if (!call_cpuid(0x80000003, CPUExtendedIdentity + 4)) { return false; } if (!call_cpuid(0x80000004, CPUExtendedIdentity + 8)) { return false; } // Process the returned information. char nbuf[49]; memcpy (&(nbuf[0]), &(CPUExtendedIdentity[0]), sizeof (int)); memcpy (&(nbuf[4]), &(CPUExtendedIdentity[1]), sizeof (int)); memcpy (&(nbuf[8]), &(CPUExtendedIdentity[2]), sizeof (int)); memcpy (&(nbuf[12]), &(CPUExtendedIdentity[3]), sizeof (int)); memcpy (&(nbuf[16]), &(CPUExtendedIdentity[4]), sizeof (int)); memcpy (&(nbuf[20]), &(CPUExtendedIdentity[5]), sizeof (int)); memcpy (&(nbuf[24]), &(CPUExtendedIdentity[6]), sizeof (int)); memcpy (&(nbuf[28]), &(CPUExtendedIdentity[7]), sizeof (int)); memcpy (&(nbuf[32]), &(CPUExtendedIdentity[8]), sizeof (int)); memcpy (&(nbuf[36]), &(CPUExtendedIdentity[9]), sizeof (int)); memcpy (&(nbuf[40]), &(CPUExtendedIdentity[10]), sizeof (int)); memcpy (&(nbuf[44]), &(CPUExtendedIdentity[11]), sizeof (int)); nbuf[48] = '\0'; this->ChipID.ProcessorName = nbuf; this->ChipID.ModelName = nbuf; // Because some manufacturers have leading white space - we have to post-process the name. SystemInformationStripLeadingSpace(this->ChipID.ProcessorName); return true; #else return false; #endif } /** */ bool SystemInformationImplementation::RetrieveClassicalCPUIdentity() { // Start by decided which manufacturer we are using.... switch (this->ChipManufacturer) { case Intel: // Check the family / model / revision to determine the CPU ID. switch (this->ChipID.Family) { case 3: this->ChipID.ProcessorName = "Newer i80386 family"; break; case 4: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "i80486DX-25/33"; break; case 1: this->ChipID.ProcessorName = "i80486DX-50"; break; case 2: this->ChipID.ProcessorName = "i80486SX"; break; case 3: this->ChipID.ProcessorName = "i80486DX2"; break; case 4: this->ChipID.ProcessorName = "i80486SL"; break; case 5: this->ChipID.ProcessorName = "i80486SX2"; break; case 7: this->ChipID.ProcessorName = "i80486DX2 WriteBack"; break; case 8: this->ChipID.ProcessorName = "i80486DX4"; break; case 9: this->ChipID.ProcessorName = "i80486DX4 WriteBack"; break; default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false; } break; case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "P5 A-Step"; break; case 1: this->ChipID.ProcessorName = "P5"; break; case 2: this->ChipID.ProcessorName = "P54C"; break; case 3: this->ChipID.ProcessorName = "P24T OverDrive"; break; case 4: this->ChipID.ProcessorName = "P55C"; break; case 7: this->ChipID.ProcessorName = "P54C"; break; case 8: this->ChipID.ProcessorName = "P55C (0.25micron)"; break; default: this->ChipID.ProcessorName = "Unknown Pentium family"; return false; } break; case 6: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "P6 A-Step"; break; case 1: this->ChipID.ProcessorName = "P6"; break; case 3: this->ChipID.ProcessorName = "Pentium II (0.28 micron)"; break; case 5: this->ChipID.ProcessorName = "Pentium II (0.25 micron)"; break; case 6: this->ChipID.ProcessorName = "Pentium II With On-Die L2 Cache"; break; case 7: this->ChipID.ProcessorName = "Pentium III (0.25 micron)"; break; case 8: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 256 KB On-Die L2 Cache "; break; case 0xa: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache "; break; case 0xb: this->ChipID.ProcessorName = "Pentium III (0.13 micron) With 256 Or 512 KB On-Die L2 Cache "; break; case 23: this->ChipID.ProcessorName = "Intel(R) Core(TM)2 Duo CPU T9500 @ 2.60GHz"; break; default: this->ChipID.ProcessorName = "Unknown P6 family"; return false; } break; case 7: this->ChipID.ProcessorName = "Intel Merced (IA-64)"; break; case 0xf: // Check the extended family bits... switch (this->ChipID.ExtendedFamily) { case 0: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break; case 1: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break; case 2: this->ChipID.ProcessorName = "Pentium IV (0.13 micron)"; break; default: this->ChipID.ProcessorName = "Unknown Pentium 4 family"; return false; } break; case 1: this->ChipID.ProcessorName = "Intel McKinley (IA-64)"; break; default: this->ChipID.ProcessorName = "Pentium"; } break; default: this->ChipID.ProcessorName = "Unknown Intel family"; return false; } break; case AMD: // Check the family / model / revision to determine the CPU ID. switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 3: this->ChipID.ProcessorName = "80486DX2"; break; case 7: this->ChipID.ProcessorName = "80486DX2 WriteBack"; break; case 8: this->ChipID.ProcessorName = "80486DX4"; break; case 9: this->ChipID.ProcessorName = "80486DX4 WriteBack"; break; case 0xe: this->ChipID.ProcessorName = "5x86"; break; case 0xf: this->ChipID.ProcessorName = "5x86WB"; break; default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false; } break; case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "SSA5 (PR75, PR90 = PR100)"; break; case 1: this->ChipID.ProcessorName = "5k86 (PR120 = PR133)"; break; case 2: this->ChipID.ProcessorName = "5k86 (PR166)"; break; case 3: this->ChipID.ProcessorName = "5k86 (PR200)"; break; case 6: this->ChipID.ProcessorName = "K6 (0.30 micron)"; break; case 7: this->ChipID.ProcessorName = "K6 (0.25 micron)"; break; case 8: this->ChipID.ProcessorName = "K6-2"; break; case 9: this->ChipID.ProcessorName = "K6-III"; break; case 0xd: this->ChipID.ProcessorName = "K6-2+ or K6-III+ (0.18 micron)"; break; default: this->ChipID.ProcessorName = "Unknown 80586 family"; return false; } break; case 6: switch (this->ChipID.Model) { case 1: this->ChipID.ProcessorName = "Athlon- (0.25 micron)"; break; case 2: this->ChipID.ProcessorName = "Athlon- (0.18 micron)"; break; case 3: this->ChipID.ProcessorName = "Duron- (SF core)"; break; case 4: this->ChipID.ProcessorName = "Athlon- (Thunderbird core)"; break; case 6: this->ChipID.ProcessorName = "Athlon- (Palomino core)"; break; case 7: this->ChipID.ProcessorName = "Duron- (Morgan core)"; break; case 8: if (this->Features.ExtendedFeatures.SupportsMP) this->ChipID.ProcessorName = "Athlon - MP (Thoroughbred core)"; else this->ChipID.ProcessorName = "Athlon - XP (Thoroughbred core)"; break; default: this->ChipID.ProcessorName = "Unknown K7 family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown AMD family"; return false; } break; case Transmeta: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 4: this->ChipID.ProcessorName = "Crusoe TM3x00 and TM5x00"; break; default: this->ChipID.ProcessorName = "Unknown Crusoe family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown Transmeta family"; return false; } break; case Rise: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "mP6 (0.25 micron)"; break; case 2: this->ChipID.ProcessorName = "mP6 (0.18 micron)"; break; default: this->ChipID.ProcessorName = "Unknown Rise family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown Rise family"; return false; } break; case UMC: switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 1: this->ChipID.ProcessorName = "U5D"; break; case 2: this->ChipID.ProcessorName = "U5S"; break; default: this->ChipID.ProcessorName = "Unknown UMC family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown UMC family"; return false; } break; case IDT: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 4: this->ChipID.ProcessorName = "C6"; break; case 8: this->ChipID.ProcessorName = "C2"; break; case 9: this->ChipID.ProcessorName = "C3"; break; default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false; } break; case 6: switch (this->ChipID.Model) { case 6: this->ChipID.ProcessorName = "VIA Cyrix III - Samuel"; break; default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false; } break; case Cyrix: switch (this->ChipID.Family) { case 4: switch (this->ChipID.Model) { case 4: this->ChipID.ProcessorName = "MediaGX GX = GXm"; break; case 9: this->ChipID.ProcessorName = "5x86"; break; default: this->ChipID.ProcessorName = "Unknown Cx5x86 family"; return false; } break; case 5: switch (this->ChipID.Model) { case 2: this->ChipID.ProcessorName = "Cx6x86"; break; case 4: this->ChipID.ProcessorName = "MediaGX GXm"; break; default: this->ChipID.ProcessorName = "Unknown Cx6x86 family"; return false; } break; case 6: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "6x86MX"; break; case 5: this->ChipID.ProcessorName = "Cyrix M2 Core"; break; case 6: this->ChipID.ProcessorName = "WinChip C5A Core"; break; case 7: this->ChipID.ProcessorName = "WinChip C5B\\C5C Core"; break; case 8: this->ChipID.ProcessorName = "WinChip C5C-T Core"; break; default: this->ChipID.ProcessorName = "Unknown 6x86MX\\Cyrix III family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown Cyrix family"; return false; } break; case NexGen: switch (this->ChipID.Family) { case 5: switch (this->ChipID.Model) { case 0: this->ChipID.ProcessorName = "Nx586 or Nx586FPU"; break; default: this->ChipID.ProcessorName = "Unknown NexGen family"; return false; } break; default: this->ChipID.ProcessorName = "Unknown NexGen family"; return false; } break; case NSC: this->ChipID.ProcessorName = "Cx486SLC \\ DLC \\ Cx486S A-Step"; break; case Sun: case IBM: case Motorola: case HP: case UnknownManufacturer: default: this->ChipID.ProcessorName = "Unknown family"; // We cannot identify the processor. return false; } return true; } /** Extract a value from the CPUInfo file */ std::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(std::string buffer,const char* word,size_t init) { size_t pos = buffer.find(word,init); if(pos != buffer.npos) { this->CurrentPositionInFile = pos; pos = buffer.find(":",pos); size_t pos2 = buffer.find("\n",pos); if(pos!=buffer.npos && pos2!=buffer.npos) { // It may happen that the beginning matches, but this is still not the requested key. // An example is looking for "cpu" when "cpu family" comes first. So we check that // we have only spaces from here to pos, otherwise we search again. for(size_t i=this->CurrentPositionInFile+strlen(word); i < pos; ++i) { if(buffer[i] != ' ' && buffer[i] != '\t') { return this->ExtractValueFromCpuInfoFile(buffer, word, pos2); } } return buffer.substr(pos+2,pos2-pos-2); } } this->CurrentPositionInFile = buffer.npos; return ""; } /** Query for the cpu status */ bool SystemInformationImplementation::RetreiveInformationFromCpuInfoFile() { this->NumberOfLogicalCPU = 0; this->NumberOfPhysicalCPU = 0; std::string buffer; FILE *fd = fopen("/proc/cpuinfo", "r" ); if ( !fd ) { std::cout << "Problem opening /proc/cpuinfo" << std::endl; return false; } size_t fileSize = 0; while(!feof(fd)) { buffer += static_cast(fgetc(fd)); fileSize++; } fclose( fd ); buffer.resize(fileSize-2); // Number of logical CPUs (combination of multiple processors, multi-core // and hyperthreading) size_t pos = buffer.find("processor\t"); while(pos != buffer.npos) { this->NumberOfLogicalCPU++; pos = buffer.find("processor\t",pos+1); } #ifdef __linux // Find the largest physical id. int maxId = -1; std::string idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id"); while(this->CurrentPositionInFile != buffer.npos) { int id = atoi(idc.c_str()); if(id > maxId) { maxId=id; } idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id", this->CurrentPositionInFile+1); } // Physical ids returned by Linux don't distinguish cores. // We want to record the total number of cores in this->NumberOfPhysicalCPU // (checking only the first proc) std::string cores = this->ExtractValueFromCpuInfoFile(buffer,"cpu cores"); int numberOfCoresPerCPU=atoi(cores.c_str()); if (maxId > 0) { this->NumberOfPhysicalCPU=static_cast( numberOfCoresPerCPU*(maxId+1)); } else { // Linux Sparc: get cpu count this->NumberOfPhysicalCPU= atoi(this->ExtractValueFromCpuInfoFile(buffer,"ncpus active").c_str()); } #else // __CYGWIN__ // does not have "physical id" entries, neither "cpu cores" // this has to be fixed for hyper-threading. std::string cpucount = this->ExtractValueFromCpuInfoFile(buffer,"cpu count"); this->NumberOfPhysicalCPU= this->NumberOfLogicalCPU = atoi(cpucount.c_str()); #endif // gotta have one, and if this is 0 then we get a / by 0n // better to have a bad answer than a crash if(this->NumberOfPhysicalCPU <= 0) { this->NumberOfPhysicalCPU = 1; } // LogicalProcessorsPerPhysical>1 => hyperthreading. this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical= this->NumberOfLogicalCPU/this->NumberOfPhysicalCPU; // CPU speed (checking only the first processor) std::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"cpu MHz"); if(!CPUSpeed.empty()) { this->CPUSpeedInMHz = static_cast(atof(CPUSpeed.c_str())); } #ifdef __linux else { // Linux Sparc: CPU speed is in Hz and encoded in hexadecimal CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"Cpu0ClkTck"); this->CPUSpeedInMHz = static_cast( strtoull(CPUSpeed.c_str(),0,16))/1000000.0f; } #endif // Chip family std::string familyStr = this->ExtractValueFromCpuInfoFile(buffer,"cpu family"); if(familyStr.empty()) { familyStr = this->ExtractValueFromCpuInfoFile(buffer,"CPU architecture"); } this->ChipID.Family = atoi(familyStr.c_str()); // Chip Vendor this->ChipID.Vendor = this->ExtractValueFromCpuInfoFile(buffer,"vendor_id"); this->FindManufacturer(familyStr); // second try for setting family if (this->ChipID.Family == 0 && this->ChipManufacturer == HP) { if (familyStr == "PA-RISC 1.1a") this->ChipID.Family = 0x11a; else if (familyStr == "PA-RISC 2.0") this->ChipID.Family = 0x200; // If you really get CMake to work on a machine not belonging to // any of those families I owe you a dinner if you get it to // contribute nightly builds regularly. } // Chip Model this->ChipID.Model = atoi(this->ExtractValueFromCpuInfoFile(buffer,"model").c_str()); if(!this->RetrieveClassicalCPUIdentity()) { // Some platforms (e.g. PA-RISC) tell us their CPU name here. // Note: x86 does not. std::string cpuname = this->ExtractValueFromCpuInfoFile(buffer,"cpu"); if(!cpuname.empty()) { this->ChipID.ProcessorName = cpuname; } } // Chip revision std::string cpurev = this->ExtractValueFromCpuInfoFile(buffer,"stepping"); if(cpurev.empty()) { cpurev = this->ExtractValueFromCpuInfoFile(buffer,"CPU revision"); } this->ChipID.Revision = atoi(cpurev.c_str()); // Chip Model Name this->ChipID.ModelName = this->ExtractValueFromCpuInfoFile(buffer,"model name").c_str(); // L1 Cache size // Different architectures may show different names for the caches. // Sum up everything we find. std::vector cachename; cachename.clear(); cachename.push_back("cache size"); // e.g. x86 cachename.push_back("I-cache"); // e.g. PA-RISC cachename.push_back("D-cache"); // e.g. PA-RISC this->Features.L1CacheSize = 0; for (size_t index = 0; index < cachename.size(); index ++) { std::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer,cachename[index]); if (!cacheSize.empty()) { pos = cacheSize.find(" KB"); if(pos!=cacheSize.npos) { cacheSize = cacheSize.substr(0,pos); } this->Features.L1CacheSize += atoi(cacheSize.c_str()); } } // processor feature flags (probably x86 specific) std::string cpuflags = this->ExtractValueFromCpuInfoFile(buffer,"flags"); if(!cpurev.empty()) { // now we can match every flags as space + flag + space cpuflags = " " + cpuflags + " "; if ((cpuflags.find(" fpu ")!=std::string::npos)) { this->Features.HasFPU = true; } if ((cpuflags.find(" tsc ")!=std::string::npos)) { this->Features.HasTSC = true; } if ((cpuflags.find(" mmx ")!=std::string::npos)) { this->Features.HasMMX = true; } if ((cpuflags.find(" sse ")!=std::string::npos)) { this->Features.HasSSE = true; } if ((cpuflags.find(" sse2 ")!=std::string::npos)) { this->Features.HasSSE2 = true; } if ((cpuflags.find(" apic ")!=std::string::npos)) { this->Features.HasAPIC = true; } if ((cpuflags.find(" cmov ")!=std::string::npos)) { this->Features.HasCMOV = true; } if ((cpuflags.find(" mtrr ")!=std::string::npos)) { this->Features.HasMTRR = true; } if ((cpuflags.find(" acpi ")!=std::string::npos)) { this->Features.HasACPI = true; } if ((cpuflags.find(" 3dnow ")!=std::string::npos)) { this->Features.ExtendedFeatures.Has3DNow = true; } } return true; } bool SystemInformationImplementation::QueryProcessorBySysconf() { #if defined(_SC_NPROC_ONLN) && !defined(_SC_NPROCESSORS_ONLN) // IRIX names this slightly different # define _SC_NPROCESSORS_ONLN _SC_NPROC_ONLN #endif #ifdef _SC_NPROCESSORS_ONLN long c = sysconf(_SC_NPROCESSORS_ONLN); if (c <= 0) { return false; } this->NumberOfPhysicalCPU = static_cast(c); this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; return true; #else return false; #endif } bool SystemInformationImplementation::QueryProcessor() { return this->QueryProcessorBySysconf(); } /** Get total system RAM in units of KiB. */ SystemInformation::LongLong SystemInformationImplementation::GetHostMemoryTotal() { #if defined(_WIN32) # if defined(_MSC_VER) && _MSC_VER < 1300 MEMORYSTATUS stat; stat.dwLength = sizeof(stat); GlobalMemoryStatus(&stat); return stat.dwTotalPhys/1024; # else MEMORYSTATUSEX statex; statex.dwLength=sizeof(statex); GlobalMemoryStatusEx(&statex); return statex.ullTotalPhys/1024; # endif #elif defined(__linux) SystemInformation::LongLong memTotal=0; int ierr=GetFieldFromFile("/proc/meminfo","MemTotal:",memTotal); if (ierr) { return -1; } return memTotal; #elif defined(__APPLE__) uint64_t mem; size_t len = sizeof(mem); int ierr=sysctlbyname("hw.memsize", &mem, &len, NULL, 0); if (ierr) { return -1; } return mem/1024; #else return 0; #endif } /** Get total system RAM in units of KiB. This may differ from the host total if a host-wide resource limit is applied. */ SystemInformation::LongLong SystemInformationImplementation::GetHostMemoryAvailable(const char *hostLimitEnvVarName) { SystemInformation::LongLong memTotal=this->GetHostMemoryTotal(); // the following mechanism is provided for systems that // apply resource limits across groups of processes. // this is of use on certain SMP systems (eg. SGI UV) // where the host has a large amount of ram but a given user's // access to it is severly restricted. The system will // apply a limit across a set of processes. Units are in KiB. if (hostLimitEnvVarName) { const char *hostLimitEnvVarValue=getenv(hostLimitEnvVarName); if (hostLimitEnvVarValue) { SystemInformation::LongLong hostLimit=atoLongLong(hostLimitEnvVarValue); if (hostLimit>0) { memTotal=min(hostLimit,memTotal); } } } return memTotal; } /** Get total system RAM in units of KiB. This may differ from the host total if a per-process resource limit is applied. */ SystemInformation::LongLong SystemInformationImplementation::GetProcMemoryAvailable( const char *hostLimitEnvVarName, const char *procLimitEnvVarName) { SystemInformation::LongLong memAvail = this->GetHostMemoryAvailable(hostLimitEnvVarName); // the following mechanism is provide for systems where rlimits // are not employed. Units are in KiB. if (procLimitEnvVarName) { const char *procLimitEnvVarValue=getenv(procLimitEnvVarName); if (procLimitEnvVarValue) { SystemInformation::LongLong procLimit=atoLongLong(procLimitEnvVarValue); if (procLimit>0) { memAvail=min(procLimit,memAvail); } } } #if defined(__linux) int ierr; ResourceLimitType rlim; ierr=GetResourceLimit(RLIMIT_DATA,&rlim); if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail); } ierr=GetResourceLimit(RLIMIT_AS,&rlim); if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail); } #elif defined(__APPLE__) struct rlimit rlim; int ierr; ierr=getrlimit(RLIMIT_DATA,&rlim); if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail); } ierr=getrlimit(RLIMIT_RSS,&rlim); if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY)) { memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail); } #endif return memAvail; } /** Get RAM used by all processes in the host, in units of KiB. */ SystemInformation::LongLong SystemInformationImplementation::GetHostMemoryUsed() { #if defined(_WIN32) # if defined(_MSC_VER) && _MSC_VER < 1300 MEMORYSTATUS stat; stat.dwLength = sizeof(stat); GlobalMemoryStatus(&stat); return (stat.dwTotalPhys - stat.dwAvailPhys)/1024; # else MEMORYSTATUSEX statex; statex.dwLength=sizeof(statex); GlobalMemoryStatusEx(&statex); return (statex.ullTotalPhys - statex.ullAvailPhys)/1024; # endif #elif defined(__linux) // First try to use MemAvailable, but it only works on newer kernels const char *names2[3]={"MemTotal:","MemAvailable:",NULL}; SystemInformation::LongLong values2[2]={SystemInformation::LongLong(0)}; int ierr=GetFieldsFromFile("/proc/meminfo",names2,values2); if (ierr) { const char *names4[5]={"MemTotal:","MemFree:","Buffers:","Cached:",NULL}; SystemInformation::LongLong values4[4]={SystemInformation::LongLong(0)}; ierr=GetFieldsFromFile("/proc/meminfo",names4,values4); if(ierr) { return ierr; } SystemInformation::LongLong &memTotal=values4[0]; SystemInformation::LongLong &memFree=values4[1]; SystemInformation::LongLong &memBuffers=values4[2]; SystemInformation::LongLong &memCached=values4[3]; return memTotal - memFree - memBuffers - memCached; } SystemInformation::LongLong &memTotal=values2[0]; SystemInformation::LongLong &memAvail=values2[1]; return memTotal - memAvail; #elif defined(__APPLE__) SystemInformation::LongLong psz=getpagesize(); if (psz<1) { return -1; } const char *names[3]={"Pages wired down:","Pages active:",NULL}; SystemInformation::LongLong values[2]={SystemInformation::LongLong(0)}; int ierr=GetFieldsFromCommand("vm_stat", names, values); if (ierr) { return -1; } SystemInformation::LongLong &vmWired=values[0]; SystemInformation::LongLong &vmActive=values[1]; return ((vmActive+vmWired)*psz)/1024; #else return 0; #endif } /** Get system RAM used by the process associated with the given process id in units of KiB. */ SystemInformation::LongLong SystemInformationImplementation::GetProcMemoryUsed() { #if defined(_WIN32) && defined(KWSYS_SYS_HAS_PSAPI) long pid=GetCurrentProcessId(); HANDLE hProc; hProc=OpenProcess( PROCESS_QUERY_INFORMATION|PROCESS_VM_READ, false, pid); if (hProc==0) { return -1; } PROCESS_MEMORY_COUNTERS pmc; int ok=GetProcessMemoryInfo(hProc,&pmc,sizeof(pmc)); CloseHandle(hProc); if (!ok) { return -2; } return pmc.WorkingSetSize/1024; #elif defined(__linux) SystemInformation::LongLong memUsed=0; int ierr=GetFieldFromFile("/proc/self/status","VmRSS:",memUsed); if (ierr) { return -1; } return memUsed; #elif defined(__APPLE__) SystemInformation::LongLong memUsed=0; pid_t pid=getpid(); std::ostringstream oss; oss << "ps -o rss= -p " << pid; FILE *file=popen(oss.str().c_str(),"r"); if (file==0) { return -1; } oss.str(""); while (!feof(file) && !ferror(file)) { char buf[256]={'\0'}; errno=0; size_t nRead=fread(buf,1,256,file); if (ferror(file) && (errno==EINTR)) { clearerr(file); } if (nRead) oss << buf; } int ierr=ferror(file); pclose(file); if (ierr) { return -2; } std::istringstream iss(oss.str()); iss >> memUsed; return memUsed; #else return 0; #endif } double SystemInformationImplementation::GetLoadAverage() { #if defined(KWSYS_CXX_HAS_GETLOADAVG) double loadavg[3] = { 0.0, 0.0, 0.0 }; if (getloadavg(loadavg, 3) > 0) { return loadavg[0]; } return -0.0; #elif defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes) // Old windows.h headers do not provide GetSystemTimes. typedef BOOL (WINAPI *GetSystemTimesType)(LPFILETIME, LPFILETIME, LPFILETIME); static GetSystemTimesType pGetSystemTimes = (GetSystemTimesType)GetProcAddress(GetModuleHandleW(L"kernel32"), "GetSystemTimes"); FILETIME idleTime, kernelTime, userTime; if (pGetSystemTimes && pGetSystemTimes(&idleTime, &kernelTime, &userTime)) { unsigned __int64 const idleTicks = fileTimeToUInt64(idleTime); unsigned __int64 const totalTicks = fileTimeToUInt64(kernelTime) + fileTimeToUInt64(userTime); return calculateCPULoad(idleTicks, totalTicks) * GetNumberOfPhysicalCPU(); } return -0.0; #else // Not implemented on this platform. return -0.0; #endif } /** Get the process id of the running process. */ SystemInformation::LongLong SystemInformationImplementation::GetProcessId() { #if defined(_WIN32) return GetCurrentProcessId(); #elif defined(__linux) || defined(__APPLE__) return getpid(); #else return -1; #endif } /** return current program stack in a string demangle cxx symbols if possible. */ std::string SystemInformationImplementation::GetProgramStack( int firstFrame, int wholePath) { std::string programStack = "" #if !defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) "WARNING: The stack could not be examined " "because backtrace is not supported.\n" #elif !defined(KWSYS_SYSTEMINFORMATION_HAS_DEBUG_BUILD) "WARNING: The stack trace will not use advanced " "capabilities because this is a release build.\n" #else # if !defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP) "WARNING: Function names will not be demangled because " "dladdr is not available.\n" # endif # if !defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE) "WARNING: Function names will not be demangled " "because cxxabi is not available.\n" # endif #endif ; std::ostringstream oss; #if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE) void *stackSymbols[256]; int nFrames=backtrace(stackSymbols,256); for (int i=firstFrame; iTotalVirtualMemory = tv>>10>>10; this->TotalPhysicalMemory = tp>>10>>10; this->AvailableVirtualMemory = av>>10>>10; this->AvailablePhysicalMemory = ap>>10>>10; return true; #else return false; #endif } bool SystemInformationImplementation::QueryLinuxMemory() { #if defined(__linux) unsigned long tv=0; unsigned long tp=0; unsigned long av=0; unsigned long ap=0; char buffer[1024]; // for reading lines int linuxMajor = 0; int linuxMinor = 0; // Find the Linux kernel version first struct utsname unameInfo; int errorFlag = uname(&unameInfo); if( errorFlag!=0 ) { std::cout << "Problem calling uname(): " << strerror(errno) << std::endl; return false; } if( strlen(unameInfo.release)>=3 ) { // release looks like "2.6.3-15mdk-i686-up-4GB" char majorChar=unameInfo.release[0]; char minorChar=unameInfo.release[2]; if( isdigit(majorChar) ) { linuxMajor=majorChar-'0'; } if( isdigit(minorChar) ) { linuxMinor=minorChar-'0'; } } FILE *fd = fopen("/proc/meminfo", "r" ); if ( !fd ) { std::cout << "Problem opening /proc/meminfo" << std::endl; return false; } if( linuxMajor>=3 || ( (linuxMajor>=2) && (linuxMinor>=6) ) ) { // new /proc/meminfo format since kernel 2.6.x // Rigorously, this test should check from the developping version 2.5.x // that introduced the new format... enum { mMemTotal, mMemFree, mBuffers, mCached, mSwapTotal, mSwapFree }; const char* format[6] = { "MemTotal:%lu kB", "MemFree:%lu kB", "Buffers:%lu kB", "Cached:%lu kB", "SwapTotal:%lu kB", "SwapFree:%lu kB" }; bool have[6] = { false, false, false, false, false, false }; unsigned long value[6]; int count = 0; while(fgets(buffer, static_cast(sizeof(buffer)), fd)) { for(int i=0; i < 6; ++i) { if(!have[i] && sscanf(buffer, format[i], &value[i]) == 1) { have[i] = true; ++count; } } } if(count == 6) { this->TotalPhysicalMemory = value[mMemTotal] / 1024; this->AvailablePhysicalMemory = (value[mMemFree] + value[mBuffers] + value[mCached]) / 1024; this->TotalVirtualMemory = value[mSwapTotal] / 1024; this->AvailableVirtualMemory = value[mSwapFree] / 1024; } else { std::cout << "Problem parsing /proc/meminfo" << std::endl; fclose(fd); return false; } } else { // /proc/meminfo format for kernel older than 2.6.x unsigned long temp; unsigned long cachedMem; unsigned long buffersMem; // Skip "total: used:..." char *r=fgets(buffer, static_cast(sizeof(buffer)), fd); int status=0; if(r==buffer) { status+=fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n", &tp, &temp, &ap, &temp, &buffersMem, &cachedMem); } if(status==6) { status+=fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av); } if(status==9) { this->TotalVirtualMemory = tv>>10>>10; this->TotalPhysicalMemory = tp>>10>>10; this->AvailableVirtualMemory = av>>10>>10; this->AvailablePhysicalMemory = (ap+buffersMem+cachedMem)>>10>>10; } else { std::cout << "Problem parsing /proc/meminfo" << std::endl; fclose(fd); return false; } } fclose( fd ); return true; #else return false; #endif } bool SystemInformationImplementation::QueryCygwinMemory() { #ifdef __CYGWIN__ // _SC_PAGE_SIZE does return the mmap() granularity on Cygwin, // see http://cygwin.com/ml/cygwin/2006-06/msg00350.html // Therefore just use 4096 as the page size of Windows. long m = sysconf(_SC_PHYS_PAGES); if (m < 0) { return false; } this->TotalPhysicalMemory = m >> 8; return true; #else return false; #endif } bool SystemInformationImplementation::QueryAIXMemory() { #if defined(_AIX) && defined(_SC_AIX_REALMEM) long c = sysconf(_SC_AIX_REALMEM); if (c <= 0) { return false; } this->TotalPhysicalMemory = c / 1024; return true; #else return false; #endif } bool SystemInformationImplementation::QueryMemoryBySysconf() { #if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE) // Assume the mmap() granularity as returned by _SC_PAGESIZE is also // the system page size. The only known system where this isn't true // is Cygwin. long p = sysconf(_SC_PHYS_PAGES); long m = sysconf(_SC_PAGESIZE); if (p < 0 || m < 0) { return false; } // assume pagesize is a power of 2 and smaller 1 MiB size_t pagediv = (1024 * 1024 / m); this->TotalPhysicalMemory = p; this->TotalPhysicalMemory /= pagediv; #if defined(_SC_AVPHYS_PAGES) p = sysconf(_SC_AVPHYS_PAGES); if (p < 0) { return false; } this->AvailablePhysicalMemory = p; this->AvailablePhysicalMemory /= pagediv; #endif return true; #else return false; #endif } /** Query for the memory status */ bool SystemInformationImplementation::QueryMemory() { return this->QueryMemoryBySysconf(); } /** */ size_t SystemInformationImplementation::GetTotalVirtualMemory() { return this->TotalVirtualMemory; } /** */ size_t SystemInformationImplementation::GetAvailableVirtualMemory() { return this->AvailableVirtualMemory; } size_t SystemInformationImplementation::GetTotalPhysicalMemory() { return this->TotalPhysicalMemory; } /** */ size_t SystemInformationImplementation::GetAvailablePhysicalMemory() { return this->AvailablePhysicalMemory; } /** Get Cycle differences */ SystemInformation::LongLong SystemInformationImplementation::GetCyclesDifference (DELAY_FUNC DelayFunction, unsigned int uiParameter) { #if defined(_MSC_VER) && (_MSC_VER >= 1400) unsigned __int64 stamp1, stamp2; stamp1 = __rdtsc(); DelayFunction(uiParameter); stamp2 = __rdtsc(); return stamp2 - stamp1; #elif USE_ASM_INSTRUCTIONS unsigned int edx1, eax1; unsigned int edx2, eax2; // Calculate the frequency of the CPU instructions. __try { _asm { push uiParameter ; push parameter param mov ebx, DelayFunction ; store func in ebx RDTSC_INSTRUCTION mov esi, eax ; esi = eax mov edi, edx ; edi = edx call ebx ; call the delay functions RDTSC_INSTRUCTION pop ebx mov edx2, edx ; edx2 = edx mov eax2, eax ; eax2 = eax mov edx1, edi ; edx2 = edi mov eax1, esi ; eax2 = esi } } __except(1) { return -1; } return ((((__int64) edx2 << 32) + eax2) - (((__int64) edx1 << 32) + eax1)); #else (void)DelayFunction; (void)uiParameter; return -1; #endif } /** Compute the delay overhead */ void SystemInformationImplementation::DelayOverhead(unsigned int uiMS) { #if defined(_WIN32) LARGE_INTEGER Frequency, StartCounter, EndCounter; __int64 x; // Get the frequency of the high performance counter. if(!QueryPerformanceFrequency (&Frequency)) { return; } x = Frequency.QuadPart / 1000 * uiMS; // Get the starting position of the counter. QueryPerformanceCounter (&StartCounter); do { // Get the ending position of the counter. QueryPerformanceCounter (&EndCounter); } while (EndCounter.QuadPart - StartCounter.QuadPart == x); #endif (void)uiMS; } /** Return the number of logical CPU per physical CPUs Works only for windows */ unsigned char SystemInformationImplementation::LogicalCPUPerPhysicalCPU(void) { #ifdef __APPLE__ size_t len = 4; int cores_per_package = 0; int err = sysctlbyname("machdep.cpu.cores_per_package", &cores_per_package, &len, NULL, 0); if (err != 0) { return 1; // That name was not found, default to 1 } return static_cast(cores_per_package); #else int Regs[4] = { 0, 0, 0, 0 }; #if USE_CPUID if (!this->IsHyperThreadingSupported()) { return static_cast(1); // HT not supported } call_cpuid(1, Regs); #endif return static_cast ((Regs[1] & NUM_LOGICAL_BITS) >> 16); #endif } /** Works only for windows */ bool SystemInformationImplementation::IsHyperThreadingSupported() { if (this->Features.ExtendedFeatures.SupportsHyperthreading) { return true; } #if USE_CPUID int Regs[4] = { 0, 0, 0, 0 }, VendorId[4] = { 0, 0, 0, 0 }; // Get vendor id string if (!call_cpuid(0, VendorId)) { return false; } // eax contains family processor type // edx has info about the availability of hyper-Threading if (!call_cpuid(1, Regs)) { return false; } if (((Regs[0] & FAMILY_ID) == PENTIUM4_ID) || (Regs[0] & EXT_FAMILY_ID)) { if (VendorId[1] == 0x756e6547) // 'uneG' { if (VendorId[3] == 0x49656e69) // 'Ieni' { if (VendorId[2] == 0x6c65746e) // 'letn' { // Genuine Intel with hyper-Threading technology this->Features.ExtendedFeatures.SupportsHyperthreading = ((Regs[3] & HT_BIT) != 0); return this->Features.ExtendedFeatures.SupportsHyperthreading; } } } } #endif return 0; // Not genuine Intel processor } /** Return the APIC Id. Works only for windows. */ unsigned char SystemInformationImplementation::GetAPICId() { int Regs[4] = { 0, 0, 0, 0 }; #if USE_CPUID if (!this->IsHyperThreadingSupported()) { return static_cast(-1); // HT not supported } // Logical processor = 1 call_cpuid(1, Regs); #endif return static_cast((Regs[1] & INITIAL_APIC_ID_BITS) >> 24); } /** Count the number of CPUs. Works only on windows. */ int SystemInformationImplementation::CPUCount() { #if defined(_WIN32) unsigned char StatusFlag = 0; SYSTEM_INFO info; this->NumberOfPhysicalCPU = 0; this->NumberOfLogicalCPU = 0; info.dwNumberOfProcessors = 0; GetSystemInfo (&info); // Number of physical processors in a non-Intel system // or in a 32-bit Intel system with Hyper-Threading technology disabled this->NumberOfPhysicalCPU = (unsigned char) info.dwNumberOfProcessors; if (this->IsHyperThreadingSupported()) { unsigned char HT_Enabled = 0; this->NumberOfLogicalCPU = this->LogicalCPUPerPhysicalCPU(); if (this->NumberOfLogicalCPU >= 1) // >1 Doesn't mean HT is enabled in the BIOS { HANDLE hCurrentProcessHandle; #ifndef _WIN64 # define DWORD_PTR DWORD #endif DWORD_PTR dwProcessAffinity; DWORD_PTR dwSystemAffinity; DWORD dwAffinityMask; // Calculate the appropriate shifts and mask based on the // number of logical processors. unsigned int i = 1; unsigned char PHY_ID_MASK = 0xFF; //unsigned char PHY_ID_SHIFT = 0; while (i < this->NumberOfLogicalCPU) { i *= 2; PHY_ID_MASK <<= 1; // PHY_ID_SHIFT++; } hCurrentProcessHandle = GetCurrentProcess(); GetProcessAffinityMask(hCurrentProcessHandle, &dwProcessAffinity, &dwSystemAffinity); // Check if available process affinity mask is equal to the // available system affinity mask if (dwProcessAffinity != dwSystemAffinity) { StatusFlag = HT_CANNOT_DETECT; this->NumberOfPhysicalCPU = (unsigned char)-1; return StatusFlag; } dwAffinityMask = 1; while (dwAffinityMask != 0 && dwAffinityMask <= dwProcessAffinity) { // Check if this CPU is available if (dwAffinityMask & dwProcessAffinity) { if (SetProcessAffinityMask(hCurrentProcessHandle, dwAffinityMask)) { unsigned char APIC_ID, LOG_ID; Sleep(0); // Give OS time to switch CPU APIC_ID = GetAPICId(); LOG_ID = APIC_ID & ~PHY_ID_MASK; if (LOG_ID != 0) { HT_Enabled = 1; } } } dwAffinityMask = dwAffinityMask << 1; } // Reset the processor affinity SetProcessAffinityMask(hCurrentProcessHandle, dwProcessAffinity); if (this->NumberOfLogicalCPU == 1) // Normal P4 : HT is disabled in hardware { StatusFlag = HT_DISABLED; } else { if (HT_Enabled) { // Total physical processors in a Hyper-Threading enabled system. this->NumberOfPhysicalCPU /= (this->NumberOfLogicalCPU); StatusFlag = HT_ENABLED; } else { StatusFlag = HT_SUPPORTED_NOT_ENABLED; } } } } else { // Processors do not have Hyper-Threading technology StatusFlag = HT_NOT_CAPABLE; this->NumberOfLogicalCPU = 1; } return StatusFlag; #else return 0; #endif } /** Return the number of logical CPUs on the system */ unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU() { return this->NumberOfLogicalCPU; } /** Return the number of physical CPUs on the system */ unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU() { return this->NumberOfPhysicalCPU; } /** For Mac use sysctlbyname calls to find system info */ bool SystemInformationImplementation::ParseSysCtl() { #if defined(__APPLE__) char retBuf[128]; int err = 0; uint64_t value = 0; size_t len = sizeof(value); sysctlbyname("hw.memsize", &value, &len, NULL, 0); this->TotalPhysicalMemory = static_cast< size_t >( value/1048576 ); // Parse values for Mac this->AvailablePhysicalMemory = 0; vm_statistics_data_t vmstat; mach_msg_type_number_t count = HOST_VM_INFO_COUNT; if ( host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t) &vmstat, &count) == KERN_SUCCESS ) { len = sizeof(value); err = sysctlbyname("hw.pagesize", &value, &len, NULL, 0); int64_t available_memory = vmstat.free_count * value; this->AvailablePhysicalMemory = static_cast< size_t >( available_memory / 1048576 ); } #ifdef VM_SWAPUSAGE // Virtual memory. int mib[2] = { CTL_VM, VM_SWAPUSAGE }; size_t miblen = sizeof(mib) / sizeof(mib[0]); struct xsw_usage swap; len = sizeof(swap); err = sysctl(mib, miblen, &swap, &len, NULL, 0); if (err == 0) { this->AvailableVirtualMemory = static_cast< size_t >( swap.xsu_avail/1048576 ); this->TotalVirtualMemory = static_cast< size_t >( swap.xsu_total/1048576 ); } #else this->AvailableVirtualMemory = 0; this->TotalVirtualMemory = 0; #endif // CPU Info len = sizeof(this->NumberOfPhysicalCPU); sysctlbyname("hw.physicalcpu", &this->NumberOfPhysicalCPU, &len, NULL, 0); len = sizeof(this->NumberOfLogicalCPU); sysctlbyname("hw.logicalcpu", &this->NumberOfLogicalCPU, &len, NULL, 0); this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = this->LogicalCPUPerPhysicalCPU(); len = sizeof(value); sysctlbyname("hw.cpufrequency", &value, &len, NULL, 0); this->CPUSpeedInMHz = static_cast< float >( value )/ 1000000; // Chip family len = sizeof(this->ChipID.Family); //Seems only the intel chips will have this name so if this fails it is //probably a PPC machine err = sysctlbyname("machdep.cpu.family", &this->ChipID.Family, &len, NULL, 0); if (err != 0) // Go back to names we know but are less descriptive { this->ChipID.Family = 0; ::memset(retBuf, 0, 128); len = 32; err = sysctlbyname("hw.machine", &retBuf, &len, NULL, 0); std::string machineBuf(retBuf); if (machineBuf.find_first_of("Power") != std::string::npos) { this->ChipID.Vendor = "IBM"; len = sizeof(this->ChipID.Family); err = sysctlbyname("hw.cputype", &this->ChipID.Family, &len, NULL, 0); len = sizeof(this->ChipID.Model); err = sysctlbyname("hw.cpusubtype", &this->ChipID.Model, &len, NULL, 0); this->FindManufacturer(); } } else // Should be an Intel Chip. { len = sizeof(this->ChipID.Family); err = sysctlbyname("machdep.cpu.family", &this->ChipID.Family, &len, NULL, 0); ::memset(retBuf, 0, 128); len = 128; err = sysctlbyname("machdep.cpu.vendor", retBuf, &len, NULL, 0); // Chip Vendor this->ChipID.Vendor = retBuf; this->FindManufacturer(); // Chip Model len = sizeof(value); err = sysctlbyname("machdep.cpu.model", &value, &len, NULL, 0); this->ChipID.Model = static_cast< int >( value ); // Chip Stepping len = sizeof(value); value = 0; err = sysctlbyname("machdep.cpu.stepping", &value, &len, NULL, 0); if (!err) { this->ChipID.Revision = static_cast< int >( value ); } // feature string char *buf = 0; size_t allocSize = 128; err = 0; len = 0; // sysctlbyname() will return with err==0 && len==0 if the buffer is too small while (err == 0 && len == 0) { delete[] buf; allocSize *= 2; buf = new char[allocSize]; if (!buf) { break; } buf[0] = ' '; len = allocSize - 2; // keep space for leading and trailing space err = sysctlbyname("machdep.cpu.features", buf + 1, &len, NULL, 0); } if (!err && buf && len) { // now we can match every flags as space + flag + space buf[len + 1] = ' '; std::string cpuflags(buf, len + 2); if ((cpuflags.find(" FPU ")!=std::string::npos)) { this->Features.HasFPU = true; } if ((cpuflags.find(" TSC ")!=std::string::npos)) { this->Features.HasTSC = true; } if ((cpuflags.find(" MMX ")!=std::string::npos)) { this->Features.HasMMX = true; } if ((cpuflags.find(" SSE ")!=std::string::npos)) { this->Features.HasSSE = true; } if ((cpuflags.find(" SSE2 ")!=std::string::npos)) { this->Features.HasSSE2 = true; } if ((cpuflags.find(" APIC ")!=std::string::npos)) { this->Features.HasAPIC = true; } if ((cpuflags.find(" CMOV ")!=std::string::npos)) { this->Features.HasCMOV = true; } if ((cpuflags.find(" MTRR ")!=std::string::npos)) { this->Features.HasMTRR = true; } if ((cpuflags.find(" ACPI ")!=std::string::npos)) { this->Features.HasACPI = true; } } delete[] buf; } // brand string ::memset(retBuf, 0, sizeof(retBuf)); len = sizeof(retBuf); err = sysctlbyname("machdep.cpu.brand_string", retBuf, &len, NULL, 0); if (!err) { this->ChipID.ProcessorName = retBuf; this->ChipID.ModelName = retBuf; } // Cache size len = sizeof(value); err = sysctlbyname("hw.l1icachesize", &value, &len, NULL, 0); this->Features.L1CacheSize = static_cast< int >( value ); len = sizeof(value); err = sysctlbyname("hw.l2cachesize", &value, &len, NULL, 0); this->Features.L2CacheSize = static_cast< int >( value ); return true; #else return false; #endif } /** Extract a value from sysctl command */ std::string SystemInformationImplementation::ExtractValueFromSysCtl(const char* word) { size_t pos = this->SysCtlBuffer.find(word); if(pos != this->SysCtlBuffer.npos) { pos = this->SysCtlBuffer.find(": ",pos); size_t pos2 = this->SysCtlBuffer.find("\n",pos); if(pos!=this->SysCtlBuffer.npos && pos2!=this->SysCtlBuffer.npos) { return this->SysCtlBuffer.substr(pos+2,pos2-pos-2); } } return ""; } /** Run a given process */ std::string SystemInformationImplementation::RunProcess(std::vector args) { std::string buffer = ""; // Run the application kwsysProcess* gp = kwsysProcess_New(); kwsysProcess_SetCommand(gp, &*args.begin()); kwsysProcess_SetOption(gp,kwsysProcess_Option_HideWindow,1); kwsysProcess_Execute(gp); char* data = NULL; int length; double timeout = 255; int pipe; // pipe id as returned by kwsysProcess_WaitForData() while( ( pipe = kwsysProcess_WaitForData(gp,&data,&length,&timeout), (pipe == kwsysProcess_Pipe_STDOUT || pipe == kwsysProcess_Pipe_STDERR) ) ) // wait for 1s { buffer.append(data, length); } kwsysProcess_WaitForExit(gp, 0); int result = 0; switch(kwsysProcess_GetState(gp)) { case kwsysProcess_State_Exited: { result = kwsysProcess_GetExitValue(gp); } break; case kwsysProcess_State_Error: { std::cerr << "Error: Could not run " << args[0] << ":\n"; std::cerr << kwsysProcess_GetErrorString(gp) << "\n"; } break; case kwsysProcess_State_Exception: { std::cerr << "Error: " << args[0] << " terminated with an exception: " << kwsysProcess_GetExceptionString(gp) << "\n"; } break; case kwsysProcess_State_Starting: case kwsysProcess_State_Executing: case kwsysProcess_State_Expired: case kwsysProcess_State_Killed: { // Should not get here. std::cerr << "Unexpected ending state after running " << args[0] << std::endl; } break; } kwsysProcess_Delete(gp); if(result) { std::cerr << "Error " << args[0] << " returned :" << result << "\n"; } return buffer; } std::string SystemInformationImplementation::ParseValueFromKStat(const char* arguments) { std::vector args; args.clear(); args.push_back("kstat"); args.push_back("-p"); std::string command = arguments; size_t start = command.npos; size_t pos = command.find(' ',0); while(pos!=command.npos) { bool inQuotes = false; // Check if we are between quotes size_t b0 = command.find('"',0); size_t b1 = command.find('"',b0+1); while(b0 != command.npos && b1 != command.npos && b1>b0) { if(pos>b0 && posRunProcess(args); std::string value = ""; for(size_t i=buffer.size()-1;i>0;i--) { if(buffer[i] == ' ' || buffer[i] == '\t') { break; } if(buffer[i] != '\n' && buffer[i] != '\r') { std::string val = value; value = buffer[i]; value += val; } } return value; } /** Querying for system information from Solaris */ bool SystemInformationImplementation::QuerySolarisMemory() { #if defined (__SVR4) && defined (__sun) // Solaris allows querying this value by sysconf, but if this is // a 32 bit process on a 64 bit host the returned memory will be // limited to 4GiB. So if this is a 32 bit process or if the sysconf // method fails use the kstat interface. #if SIZEOF_VOID_P == 8 if (this->QueryMemoryBySysconf()) { return true; } #endif char* tail; unsigned long totalMemory = strtoul(this->ParseValueFromKStat("-s physmem").c_str(),&tail,0); this->TotalPhysicalMemory = totalMemory/128; return true; #else return false; #endif } bool SystemInformationImplementation::QuerySolarisProcessor() { if (!this->QueryProcessorBySysconf()) { return false; } // Parse values this->CPUSpeedInMHz = static_cast(atoi(this->ParseValueFromKStat("-s clock_MHz").c_str())); // Chip family this->ChipID.Family = 0; // Chip Model this->ChipID.ProcessorName = this->ParseValueFromKStat("-s cpu_type"); this->ChipID.Model = 0; // Chip Vendor if (this->ChipID.ProcessorName != "i386") { this->ChipID.Vendor = "Sun"; this->FindManufacturer(); } return true; } /** Querying for system information from Haiku OS */ bool SystemInformationImplementation::QueryHaikuInfo() { #if defined(__HAIKU__) // CPU count system_info info; get_system_info(&info); this->NumberOfPhysicalCPU = info.cpu_count; // CPU speed uint32 topologyNodeCount = 0; cpu_topology_node_info* topology = 0; get_cpu_topology_info(0, &topologyNodeCount); if (topologyNodeCount != 0) topology = new cpu_topology_node_info[topologyNodeCount]; get_cpu_topology_info(topology, &topologyNodeCount); for (uint32 i = 0; i < topologyNodeCount; i++) { if (topology[i].type == B_TOPOLOGY_CORE) { this->CPUSpeedInMHz = topology[i].data.core.default_frequency / 1000000.0f; break; } } delete[] topology; // Physical Memory this->TotalPhysicalMemory = (info.max_pages * B_PAGE_SIZE) / (1024 * 1024) ; this->AvailablePhysicalMemory = this->TotalPhysicalMemory - ((info.used_pages * B_PAGE_SIZE) / (1024 * 1024)); // NOTE: get_system_info_etc is currently a private call so just set to 0 // until it becomes public this->TotalVirtualMemory = 0; this->AvailableVirtualMemory = 0; // Retrieve cpuid_info union for cpu 0 cpuid_info cpu_info; get_cpuid(&cpu_info, 0, 0); // Chip Vendor // Use a temporary buffer so that we can add NULL termination to the string char vbuf[13]; strncpy(vbuf, cpu_info.eax_0.vendor_id, 12); vbuf[12] = '\0'; this->ChipID.Vendor = vbuf; this->FindManufacturer(); // Retrieve cpuid_info union for cpu 0 this time using a register value of 1 get_cpuid(&cpu_info, 1, 0); this->NumberOfLogicalCPU = cpu_info.eax_1.logical_cpus; // Chip type this->ChipID.Type = cpu_info.eax_1.type; // Chip family this->ChipID.Family = cpu_info.eax_1.family; // Chip Model this->ChipID.Model = cpu_info.eax_1.model; // Chip Revision this->ChipID.Revision = cpu_info.eax_1.stepping; // Chip Extended Family this->ChipID.ExtendedFamily = cpu_info.eax_1.extended_family; // Chip Extended Model this->ChipID.ExtendedModel = cpu_info.eax_1.extended_model; // Get ChipID.ProcessorName from other information already gathered this->RetrieveClassicalCPUIdentity(); // Cache size this->Features.L1CacheSize = 0; this->Features.L2CacheSize = 0; return true; #else return false; #endif } bool SystemInformationImplementation::QueryQNXMemory() { #if defined(__QNX__) std::string buffer; std::vector args; args.clear(); args.push_back("showmem"); args.push_back("-S"); args.push_back(0); buffer = this->RunProcess(args); args.clear(); size_t pos = buffer.find("System RAM:"); if (pos == buffer.npos) return false; pos = buffer.find(":", pos); size_t pos2 = buffer.find("M (", pos); if (pos2 == buffer.npos) return false; pos++; while (buffer[pos] == ' ') pos++; this->TotalPhysicalMemory = atoi(buffer.substr(pos, pos2 - pos).c_str()); return true; #endif return false; } bool SystemInformationImplementation::QueryBSDMemory() { #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) int ctrl[2] = { CTL_HW, HW_PHYSMEM }; #if defined(HW_PHYSMEM64) int64_t k; ctrl[1] = HW_PHYSMEM64; #else int k; #endif size_t sz = sizeof(k); if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) { return false; } this->TotalPhysicalMemory = k>>10>>10; return true; #else return false; #endif } bool SystemInformationImplementation::QueryQNXProcessor() { #if defined(__QNX__) // the output on my QNX 6.4.1 looks like this: // Processor1: 686 Pentium II Stepping 3 2175MHz FPU std::string buffer; std::vector args; args.clear(); args.push_back("pidin"); args.push_back("info"); args.push_back(0); buffer = this->RunProcess(args); args.clear(); size_t pos = buffer.find("Processor1:"); if (pos == buffer.npos) return false; size_t pos2 = buffer.find("MHz", pos); if (pos2 == buffer.npos) return false; size_t pos3 = pos2; while (buffer[pos3] != ' ') --pos3; this->CPUSpeedInMHz = atoi(buffer.substr(pos3 + 1, pos2 - pos3 - 1).c_str()); pos2 = buffer.find(" Stepping", pos); if (pos2 != buffer.npos) { pos2 = buffer.find(" ", pos2 + 1); if (pos2 != buffer.npos && pos2 < pos3) { this->ChipID.Revision = atoi(buffer.substr(pos2 + 1, pos3 - pos2).c_str()); } } this->NumberOfPhysicalCPU = 0; do { pos = buffer.find("\nProcessor", pos + 1); ++this->NumberOfPhysicalCPU; } while (pos != buffer.npos); this->NumberOfLogicalCPU = 1; return true; #else return false; #endif } bool SystemInformationImplementation::QueryBSDProcessor() { #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) int k; size_t sz = sizeof(k); int ctrl[2] = { CTL_HW, HW_NCPU }; if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) { return false; } this->NumberOfPhysicalCPU = k; this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; #if defined(HW_CPUSPEED) ctrl[1] = HW_CPUSPEED; if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) { return false; } this->CPUSpeedInMHz = (float) k; #endif #if defined(CPU_SSE) ctrl[0] = CTL_MACHDEP; ctrl[1] = CPU_SSE; if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) { return false; } this->Features.HasSSE = (k > 0); #endif #if defined(CPU_SSE2) ctrl[0] = CTL_MACHDEP; ctrl[1] = CPU_SSE2; if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0) { return false; } this->Features.HasSSE2 = (k > 0); #endif #if defined(CPU_CPUVENDOR) ctrl[0] = CTL_MACHDEP; ctrl[1] = CPU_CPUVENDOR; char vbuf[25]; ::memset(vbuf, 0, sizeof(vbuf)); sz = sizeof(vbuf) - 1; if (sysctl(ctrl, 2, vbuf, &sz, NULL, 0) != 0) { return false; } this->ChipID.Vendor = vbuf; this->FindManufacturer(); #endif return true; #else return false; #endif } bool SystemInformationImplementation::QueryHPUXMemory() { #if defined(__hpux) unsigned long tv=0; unsigned long tp=0; unsigned long av=0; unsigned long ap=0; struct pst_static pst; struct pst_dynamic pdy; unsigned long ps = 0; if (pstat_getstatic(&pst, sizeof(pst), (size_t) 1, 0) == -1) { return false; } ps = pst.page_size; tp = pst.physical_memory *ps; tv = (pst.physical_memory + pst.pst_maxmem) * ps; if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t) 1, 0) == -1) { return false; } ap = tp - pdy.psd_rm * ps; av = tv - pdy.psd_vm; this->TotalVirtualMemory = tv>>10>>10; this->TotalPhysicalMemory = tp>>10>>10; this->AvailableVirtualMemory = av>>10>>10; this->AvailablePhysicalMemory = ap>>10>>10; return true; #else return false; #endif } bool SystemInformationImplementation::QueryHPUXProcessor() { #if defined(__hpux) # if defined(KWSYS_SYS_HAS_MPCTL_H) int c = mpctl(MPC_GETNUMSPUS_SYS, 0, 0); if (c <= 0) { return false; } this->NumberOfPhysicalCPU = c; this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU; long t = sysconf(_SC_CPU_VERSION); if (t == -1) { return false; } switch (t) { case CPU_PA_RISC1_0: this->ChipID.Vendor = "Hewlett-Packard"; this->ChipID.Family = 0x100; break; case CPU_PA_RISC1_1: this->ChipID.Vendor = "Hewlett-Packard"; this->ChipID.Family = 0x110; break; case CPU_PA_RISC2_0: this->ChipID.Vendor = "Hewlett-Packard"; this->ChipID.Family = 0x200; break; # if defined(CPU_HP_INTEL_EM_1_0) || defined(CPU_IA64_ARCHREV_0) # ifdef CPU_HP_INTEL_EM_1_0 case CPU_HP_INTEL_EM_1_0: # endif # ifdef CPU_IA64_ARCHREV_0 case CPU_IA64_ARCHREV_0: # endif this->ChipID.Vendor = "GenuineIntel"; this->Features.HasIA64 = true; break; # endif default: return false; } this->FindManufacturer(); return true; # else return false; # endif #else return false; #endif } /** Query the operating system information */ bool SystemInformationImplementation::QueryOSInformation() { #if defined(_WIN32) this->OSName = "Windows"; OSVERSIONINFOEXW osvi; BOOL bIsWindows64Bit; BOOL bOsVersionInfoEx; char operatingSystem[256]; // Try calling GetVersionEx using the OSVERSIONINFOEX structure. ZeroMemory (&osvi, sizeof (OSVERSIONINFOEXW)); osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOEXW); #ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx # pragma warning (push) # ifdef __INTEL_COMPILER # pragma warning (disable:1478) # else # pragma warning (disable:4996) # endif #endif bOsVersionInfoEx = GetVersionExW ((OSVERSIONINFOW*)&osvi); if (!bOsVersionInfoEx) { osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOW); if (!GetVersionExW((OSVERSIONINFOW*)&osvi)) { return false; } } #ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx # pragma warning (pop) #endif switch (osvi.dwPlatformId) { case VER_PLATFORM_WIN32_NT: // Test for the product. if (osvi.dwMajorVersion <= 4) { this->OSRelease = "NT"; } if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0) { this->OSRelease = "2000"; } if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease = "XP"; } // XP Professional x64 if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 2) { this->OSRelease = "XP"; } #ifdef VER_NT_WORKSTATION // Test for product type. if (bOsVersionInfoEx) { if (osvi.wProductType == VER_NT_WORKSTATION) { if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 0) { this->OSRelease = "Vista"; } if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 1) { this->OSRelease = "7"; } // VER_SUITE_PERSONAL may not be defined #ifdef VER_SUITE_PERSONAL else { if (osvi.wSuiteMask & VER_SUITE_PERSONAL) { this->OSRelease += " Personal"; } else { this->OSRelease += " Professional"; } } #endif } else if (osvi.wProductType == VER_NT_SERVER) { // Check for .NET Server instead of Windows XP. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease = ".NET"; } // Continue with the type detection. if (osvi.wSuiteMask & VER_SUITE_DATACENTER) { this->OSRelease += " DataCenter Server"; } else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE) { this->OSRelease += " Advanced Server"; } else { this->OSRelease += " Server"; } } sprintf (operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } else #endif // VER_NT_WORKSTATION { HKEY hKey; wchar_t szProductType[80]; DWORD dwBufLen; // Query the registry to retrieve information. RegOpenKeyExW(HKEY_LOCAL_MACHINE, L"SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0, KEY_QUERY_VALUE, &hKey); RegQueryValueExW(hKey, L"ProductType", NULL, NULL, (LPBYTE) szProductType, &dwBufLen); RegCloseKey (hKey); if (lstrcmpiW(L"WINNT", szProductType) == 0) { this->OSRelease += " Professional"; } if (lstrcmpiW(L"LANMANNT", szProductType) == 0) { // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease += " Standard Server"; } else { this->OSRelease += " Server"; } } if (lstrcmpiW(L"SERVERNT", szProductType) == 0) { // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server. if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { this->OSRelease += " Enterprise Server"; } else { this->OSRelease += " Advanced Server"; } } } // Display version, service pack (if any), and build number. if (osvi.dwMajorVersion <= 4) { // NB: NT 4.0 and earlier. sprintf (operatingSystem, "version %ld.%ld %ls (Build %ld)", osvi.dwMajorVersion, osvi.dwMinorVersion, osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1) { // Windows XP and .NET server. typedef BOOL (CALLBACK* LPFNPROC) (HANDLE, BOOL *); HINSTANCE hKernelDLL; LPFNPROC DLLProc; // Load the Kernel32 DLL. hKernelDLL = LoadLibraryW(L"kernel32"); if (hKernelDLL != NULL) { // Only XP and .NET Server support IsWOW64Process so... Load dynamically! DLLProc = (LPFNPROC) GetProcAddress (hKernelDLL, "IsWow64Process"); // If the function address is valid, call the function. if (DLLProc != NULL) (DLLProc) (GetCurrentProcess (), &bIsWindows64Bit); else bIsWindows64Bit = false; // Free the DLL module. FreeLibrary (hKernelDLL); } } else { // Windows 2000 and everything else. sprintf (operatingSystem,"%ls (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF); this->OSVersion = operatingSystem; } break; case VER_PLATFORM_WIN32_WINDOWS: // Test for the product. if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0) { this->OSRelease = "95"; if(osvi.szCSDVersion[1] == 'C') { this->OSRelease += "OSR 2.5"; } else if(osvi.szCSDVersion[1] == 'B') { this->OSRelease += "OSR 2"; } } if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10) { this->OSRelease = "98"; if (osvi.szCSDVersion[1] == 'A' ) { this->OSRelease += "SE"; } } if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90) { this->OSRelease = "Me"; } break; case VER_PLATFORM_WIN32s: this->OSRelease = "Win32s"; break; default: this->OSRelease = "Unknown"; break; } // Get the hostname WORD wVersionRequested; WSADATA wsaData; char name[255]; wVersionRequested = MAKEWORD(2,0); if ( WSAStartup( wVersionRequested, &wsaData ) == 0 ) { gethostname(name,sizeof(name)); WSACleanup( ); } this->Hostname = name; const char* arch = getenv("PROCESSOR_ARCHITECTURE"); if(arch) { this->OSPlatform = arch; } #else struct utsname unameInfo; int errorFlag = uname(&unameInfo); if(errorFlag == 0) { this->OSName = unameInfo.sysname; this->Hostname = unameInfo.nodename; this->OSRelease = unameInfo.release; this->OSVersion = unameInfo.version; this->OSPlatform = unameInfo.machine; } #ifdef __APPLE__ this->OSName="Unknown Apple OS"; this->OSRelease="Unknown product version"; this->OSVersion="Unknown build version"; this->CallSwVers("-productName",this->OSName); this->CallSwVers("-productVersion",this->OSRelease); this->CallSwVers("-buildVersion",this->OSVersion); #endif #endif return true; } int SystemInformationImplementation::CallSwVers( const char *arg, std::string &ver) { #ifdef __APPLE__ std::vector args; args.push_back("sw_vers"); args.push_back(arg); args.push_back(0); ver = this->RunProcess(args); this->TrimNewline(ver); #else // avoid C4100 (void)arg; (void)ver; #endif return 0; } void SystemInformationImplementation::TrimNewline(std::string& output) { // remove \r std::string::size_type pos=0; while((pos = output.find("\r", pos)) != std::string::npos) { output.erase(pos); } // remove \n pos = 0; while((pos = output.find("\n", pos)) != std::string::npos) { output.erase(pos); } } /** Return true if the machine is 64 bits */ bool SystemInformationImplementation::Is64Bits() { return (sizeof(void*) == 8); } } // namespace @KWSYS_NAMESPACE@