/*============================================================================
  KWSys - Kitware System Library
  Copyright 2000-2009 Kitware, Inc., Insight Software Consortium

  Distributed under the OSI-approved BSD License (the "License");
  see accompanying file Copyright.txt for details.

  This software is distributed WITHOUT ANY WARRANTY; without even the
  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  See the License for more information.
============================================================================*/

#if defined(_WIN32)
# define NOMINMAX // use our min,max
# if !defined(_WIN32_WINNT) && !(defined(_MSC_VER) && _MSC_VER < 1300)
#  define _WIN32_WINNT 0x0501
# endif
# include <winsock.h> // WSADATA, include before sys/types.h
#endif

#if (defined(__GNUC__) || defined(__PGI)) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

// TODO:
// We need an alternative implementation for many functions in this file
// when USE_ASM_INSTRUCTIONS gets defined as 0.
//
// Consider using these on Win32/Win64 for some of them:
//
// IsProcessorFeaturePresent
// http://msdn.microsoft.com/en-us/library/ms724482(VS.85).aspx
//
// GetProcessMemoryInfo
// http://msdn.microsoft.com/en-us/library/ms683219(VS.85).aspx

#include "kwsysPrivate.h"
#include KWSYS_HEADER(SystemInformation.hxx)
#include KWSYS_HEADER(Process.h)

// Work-around CMake dependency scanning limitation.  This must
// duplicate the above list of headers.
#if 0
# include "SystemInformation.hxx.in"
# include "Process.h.in"
#endif

#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <vector>

#if defined(_WIN32)
# include <windows.h>
# if defined(_MSC_VER) && _MSC_VER >= 1800
#  define KWSYS_WINDOWS_DEPRECATED_GetVersionEx
# endif
# include <errno.h>
# if defined(KWSYS_SYS_HAS_PSAPI)
#  include <psapi.h>
# endif
# if !defined(siginfo_t)
typedef int siginfo_t;
# endif
#else
# include <sys/types.h>
# include <sys/time.h>
# include <sys/utsname.h> // int uname(struct utsname *buf);
# include <sys/resource.h> // getrlimit
# include <unistd.h>
# include <signal.h>
# include <fcntl.h>
# include <errno.h> // extern int errno;
#endif

#if defined (__CYGWIN__) && !defined(_WIN32)
# include <windows.h>
# undef _WIN32
#endif

#ifdef __FreeBSD__
# include <sys/sysctl.h>
# include <fenv.h>
# include <sys/socket.h>
# include <netdb.h>
# include <netinet/in.h>
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
#  include <ifaddrs.h>
#  define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
# endif
#endif

#if defined(__OpenBSD__) || defined(__NetBSD__)
# include <sys/param.h>
# include <sys/sysctl.h>
#endif

#if defined(KWSYS_SYS_HAS_MACHINE_CPU_H)
# include <machine/cpu.h>
#endif

#if defined(__DragonFly__)
# include <sys/sysctl.h>
#endif

#ifdef __APPLE__
# include <sys/sysctl.h>
# include <mach/vm_statistics.h>
# include <mach/host_info.h>
# include <mach/mach.h>
# include <mach/mach_types.h>
# include <fenv.h>
# include <sys/socket.h>
# include <netdb.h>
# include <netinet/in.h>
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
#  include <ifaddrs.h>
#  define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
# endif
# if !(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__-0 >= 1050)
#  undef KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE
# endif
#endif

#ifdef __linux
# include <fenv.h>
# include <sys/socket.h>
# include <netdb.h>
# include <netinet/in.h>
# if defined(KWSYS_SYS_HAS_IFADDRS_H)
#  include <ifaddrs.h>
#  if !defined(__LSB_VERSION__) /* LSB has no getifaddrs */
#   define KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN
#  endif
# endif
# if defined(KWSYS_CXX_HAS_RLIMIT64)
typedef struct rlimit64 ResourceLimitType;
#  define GetResourceLimit getrlimit64
# else
typedef struct rlimit ResourceLimitType;
#  define GetResourceLimit getrlimit
# endif
#elif defined( __hpux )
# include <sys/param.h>
# include <sys/pstat.h>
# if defined(KWSYS_SYS_HAS_MPCTL_H)
#  include <sys/mpctl.h>
# endif
#endif

#ifdef __HAIKU__
# include <OS.h>
#endif

#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
# include <execinfo.h>
# if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
#  include <cxxabi.h>
# endif
# if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
#  include <dlfcn.h>
# endif
#else
# undef KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE
# undef KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP
#endif

#include <memory.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h> // int isdigit(int c);

#if defined(KWSYS_USE_LONG_LONG)
# if defined(KWSYS_IOS_HAS_OSTREAM_LONG_LONG)
#  define iostreamLongLong(x) (x)
# else
#  define iostreamLongLong(x) ((long)(x))
# endif
#elif defined(KWSYS_USE___INT64)
# if defined(KWSYS_IOS_HAS_OSTREAM___INT64)
#  define iostreamLongLong(x) (x)
# else
#  define iostreamLongLong(x) ((long)(x))
# endif
#else
# error "No Long Long"
#endif

#if defined(KWSYS_CXX_HAS_ATOLL)
# define atoLongLong atoll
#else
# if defined(KWSYS_CXX_HAS__ATOI64)
#  define atoLongLong _atoi64
# elif defined(KWSYS_CXX_HAS_ATOL)
#  define atoLongLong atol
# else
#  define atoLongLong atoi
# endif
#endif

#if defined(_MSC_VER) && (_MSC_VER >= 1300) && !defined(_WIN64) && !defined(__clang__)
#define USE_ASM_INSTRUCTIONS 1
#else
#define USE_ASM_INSTRUCTIONS 0
#endif

#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__clang__)
#include <intrin.h>
#define USE_CPUID_INTRINSICS 1
#else
#define USE_CPUID_INTRINSICS 0
#endif

#if USE_ASM_INSTRUCTIONS || USE_CPUID_INTRINSICS || defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID)
# define USE_CPUID 1
#else
# define USE_CPUID 0
#endif

#if USE_CPUID

#define CPUID_AWARE_COMPILER

/**
 * call CPUID instruction
 *
 * Will return false if the instruction failed.
 */
static bool call_cpuid(int select, int result[4])
{
#if USE_CPUID_INTRINSICS
  __cpuid(result, select);
  return true;
#else
  int tmp[4];
#if defined(_MSC_VER)
  // Use SEH to determine CPUID presence
  __try {
    _asm {
#ifdef CPUID_AWARE_COMPILER
      ; we must push/pop the registers <<CPUID>> writes to, as the
      ; optimiser does not know about <<CPUID>>, and so does not expect
      ; these registers to change.
      push eax
      push ebx
      push ecx
      push edx
#endif
      ; <<CPUID>>
      mov eax, select
#ifdef CPUID_AWARE_COMPILER
      cpuid
#else
      _asm _emit 0x0f
      _asm _emit 0xa2
#endif
      mov tmp[0 * TYPE int], eax
      mov tmp[1 * TYPE int], ebx
      mov tmp[2 * TYPE int], ecx
      mov tmp[3 * TYPE int], edx

#ifdef CPUID_AWARE_COMPILER
      pop edx
      pop ecx
      pop ebx
      pop eax
#endif
      }
    }
  __except(1)
    {
    return false;
    }

    memcpy(result, tmp, sizeof(tmp));
#elif defined(KWSYS_CXX_HAS_BORLAND_ASM_CPUID)
  unsigned int a, b, c, d;
  __asm {
    mov EAX, select;
    cpuid
    mov a, EAX;
    mov b, EBX;
    mov c, ECX;
    mov d, EDX;
  }

  result[0] = a;
  result[1] = b;
  result[2] = c;
  result[3] = d;
#endif

  // The cpuid instruction succeeded.
  return true;
#endif
}
#endif


namespace KWSYS_NAMESPACE
{
template<typename T>
T min(T a, T b){ return a<b ? a : b; }

extern "C" { typedef void (*SigAction)(int,siginfo_t*,void*); }

//  Define SystemInformationImplementation class
typedef  void (*DELAY_FUNC)(unsigned int uiMS);

class SystemInformationImplementation
{
public:
  typedef SystemInformation::LongLong LongLong;
  SystemInformationImplementation ();
  ~SystemInformationImplementation ();

  const char * GetVendorString();
  const char * GetVendorID();
  std::string GetTypeID();
  std::string GetFamilyID();
  std::string GetModelID();
  std::string GetModelName();
  std::string GetSteppingCode();
  const char * GetExtendedProcessorName();
  const char * GetProcessorSerialNumber();
  int GetProcessorCacheSize();
  unsigned int GetLogicalProcessorsPerPhysical();
  float GetProcessorClockFrequency();
  int GetProcessorAPICID();
  int GetProcessorCacheXSize(long int);
  bool DoesCPUSupportFeature(long int);

  const char * GetOSName();
  const char * GetHostname();
  int GetFullyQualifiedDomainName(std::string &fqdn);
  const char * GetOSRelease();
  const char * GetOSVersion();
  const char * GetOSPlatform();

  bool Is64Bits();

  unsigned int GetNumberOfLogicalCPU(); // per physical cpu
  unsigned int GetNumberOfPhysicalCPU();

  bool DoesCPUSupportCPUID();

  // Retrieve memory information in megabyte.
  size_t GetTotalVirtualMemory();
  size_t GetAvailableVirtualMemory();
  size_t GetTotalPhysicalMemory();
  size_t GetAvailablePhysicalMemory();

  LongLong GetProcessId();

  // Retrieve memory information in kib
  LongLong GetHostMemoryTotal();
  LongLong GetHostMemoryAvailable(const char *envVarName);
  LongLong GetHostMemoryUsed();

  LongLong GetProcMemoryAvailable(
        const char *hostLimitEnvVarName,
        const char *procLimitEnvVarName);
  LongLong GetProcMemoryUsed();

  double GetLoadAverage();

  // enable/disable stack trace signal handler.
  static
  void SetStackTraceOnError(int enable);

  // get current stack
  static
  std::string GetProgramStack(int firstFrame, int wholePath);

  /** Run the different checks */
  void RunCPUCheck();
  void RunOSCheck();
  void RunMemoryCheck();

public:
  typedef struct tagID
    {
    int Type;
    int Family;
    int Model;
    int Revision;
    int ExtendedFamily;
    int ExtendedModel;
    std::string ProcessorName;
    std::string Vendor;
    std::string SerialNumber;
    std::string ModelName;
    } ID;

  typedef struct tagCPUPowerManagement
    {
    bool HasVoltageID;
    bool HasFrequencyID;
    bool HasTempSenseDiode;
    } CPUPowerManagement;

  typedef struct tagCPUExtendedFeatures
    {
    bool Has3DNow;
    bool Has3DNowPlus;
    bool SupportsMP;
    bool HasMMXPlus;
    bool HasSSEMMX;
    bool SupportsHyperthreading;
    unsigned int LogicalProcessorsPerPhysical;
    int APIC_ID;
    CPUPowerManagement PowerManagement;
    } CPUExtendedFeatures;

  typedef struct CPUtagFeatures
    {
    bool HasFPU;
    bool HasTSC;
    bool HasMMX;
    bool HasSSE;
    bool HasSSEFP;
    bool HasSSE2;
    bool HasIA64;
    bool HasAPIC;
    bool HasCMOV;
    bool HasMTRR;
    bool HasACPI;
    bool HasSerial;
    bool HasThermal;
    int CPUSpeed;
    int L1CacheSize;
    int L2CacheSize;
    int L3CacheSize;
    CPUExtendedFeatures ExtendedFeatures;
    } CPUFeatures;

  enum Manufacturer
    {
    AMD, Intel, NSC, UMC, Cyrix, NexGen, IDT, Rise, Transmeta, Sun, IBM,
    Motorola, HP, UnknownManufacturer
    };

protected:
  // For windows
  bool RetrieveCPUFeatures();
  bool RetrieveCPUIdentity();
  bool RetrieveCPUCacheDetails();
  bool RetrieveClassicalCPUCacheDetails();
  bool RetrieveCPUClockSpeed();
  bool RetrieveClassicalCPUClockSpeed();
  bool RetrieveCPUExtendedLevelSupport(int);
  bool RetrieveExtendedCPUFeatures();
  bool RetrieveProcessorSerialNumber();
  bool RetrieveCPUPowerManagement();
  bool RetrieveClassicalCPUIdentity();
  bool RetrieveExtendedCPUIdentity();

  // Processor information
  Manufacturer  ChipManufacturer;
  CPUFeatures   Features;
  ID            ChipID;
  float         CPUSpeedInMHz;
  unsigned int  NumberOfLogicalCPU;
  unsigned int  NumberOfPhysicalCPU;

  int CPUCount(); // For windows
  unsigned char LogicalCPUPerPhysicalCPU();
  unsigned char GetAPICId(); // For windows
  bool IsHyperThreadingSupported();
  static LongLong GetCyclesDifference(DELAY_FUNC, unsigned int); // For windows

  // For Linux and Cygwin, /proc/cpuinfo formats are slightly different
  bool RetreiveInformationFromCpuInfoFile();
  std::string ExtractValueFromCpuInfoFile(std::string buffer,
                                          const char* word, size_t init=0);

  bool QueryLinuxMemory();
  bool QueryCygwinMemory();

  static void Delay (unsigned int);
  static void DelayOverhead (unsigned int);

  void FindManufacturer(const std::string &family = "");

  // For Mac
  bool ParseSysCtl();
  int CallSwVers(const char *arg, std::string &ver);
  void TrimNewline(std::string&);
  std::string ExtractValueFromSysCtl(const char* word);
  std::string SysCtlBuffer;

  // For Solaris
  bool QuerySolarisMemory();
  bool QuerySolarisProcessor();
  std::string ParseValueFromKStat(const char* arguments);
  std::string RunProcess(std::vector<const char*> args);

  //For Haiku OS
  bool QueryHaikuInfo();

  //For QNX
  bool QueryQNXMemory();
  bool QueryQNXProcessor();

  //For OpenBSD, FreeBSD, NetBSD, DragonFly
  bool QueryBSDMemory();
  bool QueryBSDProcessor();

  //For HP-UX
  bool QueryHPUXMemory();
  bool QueryHPUXProcessor();

  //For Microsoft Windows
  bool QueryWindowsMemory();

  //For AIX
  bool QueryAIXMemory();

  bool QueryProcessorBySysconf();
  bool QueryProcessor();

  // Evaluate the memory information.
  bool QueryMemoryBySysconf();
  bool QueryMemory();
  size_t TotalVirtualMemory;
  size_t AvailableVirtualMemory;
  size_t TotalPhysicalMemory;
  size_t AvailablePhysicalMemory;

  size_t CurrentPositionInFile;

  // Operating System information
  bool QueryOSInformation();
  std::string OSName;
  std::string Hostname;
  std::string OSRelease;
  std::string OSVersion;
  std::string OSPlatform;
};


SystemInformation::SystemInformation()
{
  this->Implementation = new SystemInformationImplementation;
}

SystemInformation::~SystemInformation()
{
  delete this->Implementation;
}

const char * SystemInformation::GetVendorString()
{
  return this->Implementation->GetVendorString();
}

const char * SystemInformation::GetVendorID()
{
  return this->Implementation->GetVendorID();
}

std::string SystemInformation::GetTypeID()
{
  return this->Implementation->GetTypeID();
}

std::string SystemInformation::GetFamilyID()
{
  return this->Implementation->GetFamilyID();
}

std::string SystemInformation::GetModelID()
{
  return this->Implementation->GetModelID();
}

std::string SystemInformation::GetModelName()
{
  return this->Implementation->GetModelName();
}

std::string SystemInformation::GetSteppingCode()
{
  return this->Implementation->GetSteppingCode();
}

const char * SystemInformation::GetExtendedProcessorName()
{
  return this->Implementation->GetExtendedProcessorName();
}

const char * SystemInformation::GetProcessorSerialNumber()
{
  return this->Implementation->GetProcessorSerialNumber();
}

int SystemInformation::GetProcessorCacheSize()
{
  return this->Implementation->GetProcessorCacheSize();
}

unsigned int SystemInformation::GetLogicalProcessorsPerPhysical()
{
  return this->Implementation->GetLogicalProcessorsPerPhysical();
}

float SystemInformation::GetProcessorClockFrequency()
{
  return this->Implementation->GetProcessorClockFrequency();
}

int SystemInformation::GetProcessorAPICID()
{
  return this->Implementation->GetProcessorAPICID();
}

int SystemInformation::GetProcessorCacheXSize(long int l)
{
  return this->Implementation->GetProcessorCacheXSize(l);
}

bool SystemInformation::DoesCPUSupportFeature(long int i)
{
  return this->Implementation->DoesCPUSupportFeature(i);
}

std::string SystemInformation::GetCPUDescription()
{
  std::ostringstream oss;
  oss
    << this->GetNumberOfPhysicalCPU()
    << " core ";
  if (this->GetModelName().empty())
    {
    oss
      << this->GetProcessorClockFrequency()
      << " MHz "
      << this->GetVendorString()
      << " "
      << this->GetExtendedProcessorName();
    }
  else
    {
    oss << this->GetModelName();
    }

  // remove extra spaces
  std::string tmp=oss.str();
  size_t pos;
  while( (pos=tmp.find("  "))!=std::string::npos)
    {
    tmp.replace(pos,2," ");
    }

  return tmp;
}

const char * SystemInformation::GetOSName()
{
  return this->Implementation->GetOSName();
}

const char * SystemInformation::GetHostname()
{
  return this->Implementation->GetHostname();
}

std::string SystemInformation::GetFullyQualifiedDomainName()
{
  std::string fqdn;
  this->Implementation->GetFullyQualifiedDomainName(fqdn);
  return fqdn;
}

const char * SystemInformation::GetOSRelease()
{
  return this->Implementation->GetOSRelease();
}

const char * SystemInformation::GetOSVersion()
{
  return this->Implementation->GetOSVersion();
}

const char * SystemInformation::GetOSPlatform()
{
  return this->Implementation->GetOSPlatform();
}

int SystemInformation::GetOSIsWindows()
{
#if defined(_WIN32)
  return 1;
#else
  return 0;
#endif
}

int SystemInformation::GetOSIsLinux()
{
#if defined(__linux)
  return 1;
#else
  return 0;
#endif
}

int SystemInformation::GetOSIsApple()
{
#if defined(__APPLE__)
  return 1;
#else
  return 0;
#endif
}

std::string SystemInformation::GetOSDescription()
{
  std::ostringstream oss;
  oss
    << this->GetOSName()
    << " "
    << this->GetOSRelease()
    << " "
    << this->GetOSVersion();

  return oss.str();
}

bool SystemInformation::Is64Bits()
{
  return this->Implementation->Is64Bits();
}

unsigned int SystemInformation::GetNumberOfLogicalCPU() // per physical cpu
{
  return this->Implementation->GetNumberOfLogicalCPU();
}

unsigned int SystemInformation::GetNumberOfPhysicalCPU()
{
  return this->Implementation->GetNumberOfPhysicalCPU();
}

bool SystemInformation::DoesCPUSupportCPUID()
{
  return this->Implementation->DoesCPUSupportCPUID();
}

// Retrieve memory information in megabyte.
size_t SystemInformation::GetTotalVirtualMemory()
{
  return this->Implementation->GetTotalVirtualMemory();
}

size_t SystemInformation::GetAvailableVirtualMemory()
{
  return this->Implementation->GetAvailableVirtualMemory();
}

size_t SystemInformation::GetTotalPhysicalMemory()
{
  return this->Implementation->GetTotalPhysicalMemory();
}

size_t SystemInformation::GetAvailablePhysicalMemory()
{
  return this->Implementation->GetAvailablePhysicalMemory();
}

std::string SystemInformation::GetMemoryDescription(
      const char *hostLimitEnvVarName,
      const char *procLimitEnvVarName)
{
  std::ostringstream oss;
  oss
    << "Host Total: "
    << iostreamLongLong(this->GetHostMemoryTotal())
    << " KiB, Host Available: "
    << iostreamLongLong(this->GetHostMemoryAvailable(hostLimitEnvVarName))
    << " KiB, Process Available: "
    << iostreamLongLong(
         this->GetProcMemoryAvailable(hostLimitEnvVarName,procLimitEnvVarName))
    << " KiB";
  return oss.str();
}

// host memory info in units of KiB.
SystemInformation::LongLong SystemInformation::GetHostMemoryTotal()
{
  return this->Implementation->GetHostMemoryTotal();
}

SystemInformation::LongLong
SystemInformation::GetHostMemoryAvailable(const char *hostLimitEnvVarName)
{
  return this->Implementation->GetHostMemoryAvailable(hostLimitEnvVarName);
}

SystemInformation::LongLong SystemInformation::GetHostMemoryUsed()
{
  return this->Implementation->GetHostMemoryUsed();
}

// process memory info in units of KiB.
SystemInformation::LongLong
SystemInformation::GetProcMemoryAvailable(
        const char *hostLimitEnvVarName,
        const char *procLimitEnvVarName)
{
  return this->Implementation->GetProcMemoryAvailable(
          hostLimitEnvVarName,
          procLimitEnvVarName);
}

SystemInformation::LongLong SystemInformation::GetProcMemoryUsed()
{
  return this->Implementation->GetProcMemoryUsed();
}

double SystemInformation::GetLoadAverage()
{
  return this->Implementation->GetLoadAverage();
}

SystemInformation::LongLong SystemInformation::GetProcessId()
{
  return this->Implementation->GetProcessId();
}

void SystemInformation::SetStackTraceOnError(int enable)
{
  SystemInformationImplementation::SetStackTraceOnError(enable);
}

std::string SystemInformation::GetProgramStack(int firstFrame, int wholePath)
{
  return SystemInformationImplementation::GetProgramStack(firstFrame, wholePath);
}

/** Run the different checks */
void SystemInformation::RunCPUCheck()
{
  this->Implementation->RunCPUCheck();
}

void SystemInformation::RunOSCheck()
{
  this->Implementation->RunOSCheck();
}

void SystemInformation::RunMemoryCheck()
{
  this->Implementation->RunMemoryCheck();
}


// --------------------------------------------------------------
// SystemInformationImplementation starts here

#define STORE_TLBCACHE_INFO(x,y)  x = (x < (y)) ? (y) : x
#define TLBCACHE_INFO_UNITS      (15)
#define CLASSICAL_CPU_FREQ_LOOP    10000000
#define RDTSC_INSTRUCTION      _asm _emit 0x0f _asm _emit 0x31

#define MMX_FEATURE            0x00000001
#define MMX_PLUS_FEATURE       0x00000002
#define SSE_FEATURE            0x00000004
#define SSE2_FEATURE           0x00000008
#define AMD_3DNOW_FEATURE      0x00000010
#define AMD_3DNOW_PLUS_FEATURE 0x00000020
#define IA64_FEATURE           0x00000040
#define MP_CAPABLE             0x00000080
#define HYPERTHREAD_FEATURE    0x00000100
#define SERIALNUMBER_FEATURE   0x00000200
#define APIC_FEATURE           0x00000400
#define SSE_FP_FEATURE         0x00000800
#define SSE_MMX_FEATURE        0x00001000
#define CMOV_FEATURE           0x00002000
#define MTRR_FEATURE           0x00004000
#define L1CACHE_FEATURE        0x00008000
#define L2CACHE_FEATURE        0x00010000
#define L3CACHE_FEATURE        0x00020000
#define ACPI_FEATURE           0x00040000
#define THERMALMONITOR_FEATURE 0x00080000
#define TEMPSENSEDIODE_FEATURE 0x00100000
#define FREQUENCYID_FEATURE    0x00200000
#define VOLTAGEID_FREQUENCY    0x00400000

// Status Flag
#define HT_NOT_CAPABLE           0
#define HT_ENABLED               1
#define HT_DISABLED              2
#define HT_SUPPORTED_NOT_ENABLED 3
#define HT_CANNOT_DETECT         4

// EDX[28]  Bit 28 is set if HT is supported
#define HT_BIT             0x10000000

// EAX[11:8] Bit 8-11 contains family processor ID.
#define FAMILY_ID          0x0F00
#define PENTIUM4_ID        0x0F00
// EAX[23:20] Bit 20-23 contains extended family processor ID
#define EXT_FAMILY_ID      0x0F00000
// EBX[23:16] Bit 16-23 in ebx contains the number of logical
#define NUM_LOGICAL_BITS   0x00FF0000
// processors per physical processor when execute cpuid with
// eax set to 1
// EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique
#define INITIAL_APIC_ID_BITS  0xFF000000
// initial APIC ID for the processor this code is running on.
// Default value = 0xff if HT is not supported

// Hide implementation details in an anonymous namespace.
namespace {
// *****************************************************************************
#if defined(__linux) || defined(__APPLE__)
int LoadLines(
      FILE *file,
      std::vector<std::string> &lines)
{
  // Load each line in the given file into a the vector.
  int nRead=0;
  const int bufSize=1024;
  char buf[bufSize]={'\0'};
  while (!feof(file) && !ferror(file))
    {
    errno=0;
    if (fgets(buf,bufSize,file) == 0)
      {
      if (ferror(file) && (errno==EINTR))
        {
        clearerr(file);
        }
      continue;
      }
    char *pBuf=buf;
    while(*pBuf)
      {
      if (*pBuf=='\n') *pBuf='\0';
      pBuf+=1;
      }
    lines.push_back(buf);
    ++nRead;
    }
  if (ferror(file))
    {
    return 0;
    }
  return nRead;
}

# if defined(__linux)
// *****************************************************************************
int LoadLines(
      const char *fileName,
      std::vector<std::string> &lines)
{
  FILE *file=fopen(fileName,"r");
  if (file==0)
    {
    return 0;
    }
  int nRead=LoadLines(file,lines);
  fclose(file);
  return nRead;
}
# endif

// ****************************************************************************
template<typename T>
int NameValue(
      std::vector<std::string> &lines,
      std::string name, T &value)
{
  size_t nLines=lines.size();
  for (size_t i=0; i<nLines; ++i)
    {
    size_t at=lines[i].find(name);
    if (at==std::string::npos)
      {
      continue;
      }
    std::istringstream is(lines[i].substr(at+name.size()));
    is >> value;
    return 0;
    }
  return -1;
}
#endif

#if defined(__linux)
// ****************************************************************************
template<typename T>
int GetFieldsFromFile(
      const char *fileName,
      const char **fieldNames,
      T *values)
{
  std::vector<std::string> fields;
  if (!LoadLines(fileName,fields))
    {
    return -1;
    }
  int i=0;
  while (fieldNames[i]!=NULL)
    {
    int ierr=NameValue(fields,fieldNames[i],values[i]);
    if (ierr)
      {
      return -(i+2);
      }
    i+=1;
    }
  return 0;
}

// ****************************************************************************
template<typename T>
int GetFieldFromFile(
      const char *fileName,
      const char *fieldName,
      T &value)
{
  const char *fieldNames[2]={fieldName,NULL};
  T values[1]={T(0)};
  int ierr=GetFieldsFromFile(fileName,fieldNames,values);
  if (ierr)
    {
    return ierr;
    }
  value=values[0];
  return 0;
}
#endif

// ****************************************************************************
#if defined(__APPLE__)
template<typename T>
int GetFieldsFromCommand(
      const char *command,
      const char **fieldNames,
      T *values)
{
  FILE *file=popen(command,"r");
  if (file==0)
    {
    return -1;
    }
  std::vector<std::string> fields;
  int nl=LoadLines(file,fields);
  pclose(file);
  if (nl==0)
    {
    return -1;
    }
  int i=0;
  while (fieldNames[i]!=NULL)
    {
    int ierr=NameValue(fields,fieldNames[i],values[i]);
    if (ierr)
      {
      return -(i+2);
      }
    i+=1;
    }
  return 0;
}
#endif

// ****************************************************************************
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
void StacktraceSignalHandler(
      int sigNo,
      siginfo_t *sigInfo,
      void * /*sigContext*/)
{
#if defined(__linux) || defined(__APPLE__)
  std::ostringstream oss;
  oss
     << std::endl
     << "=========================================================" << std::endl
     << "Process id " << getpid() << " ";
  switch (sigNo)
    {
    case SIGINT:
      oss << "Caught SIGINT";
      break;

    case SIGTERM:
      oss << "Caught SIGTERM";
      break;

    case SIGABRT:
      oss << "Caught SIGABRT";
      break;

    case SIGFPE:
      oss
        << "Caught SIGFPE at "
        << (sigInfo->si_addr==0?"0x":"")
        << sigInfo->si_addr
        <<  " ";
      switch (sigInfo->si_code)
        {
# if defined(FPE_INTDIV)
        case FPE_INTDIV:
          oss << "integer division by zero";
          break;
# endif

# if defined(FPE_INTOVF)
        case FPE_INTOVF:
          oss << "integer overflow";
          break;
# endif

        case FPE_FLTDIV:
          oss << "floating point divide by zero";
          break;

        case FPE_FLTOVF:
          oss << "floating point overflow";
          break;

        case FPE_FLTUND:
          oss << "floating point underflow";
          break;

        case FPE_FLTRES:
          oss << "floating point inexact result";
          break;

        case FPE_FLTINV:
          oss << "floating point invalid operation";
          break;

#if defined(FPE_FLTSUB)
        case FPE_FLTSUB:
          oss << "floating point subscript out of range";
          break;
#endif

        default:
          oss << "code " << sigInfo->si_code;
          break;
        }
      break;

    case SIGSEGV:
      oss
        << "Caught SIGSEGV at "
        << (sigInfo->si_addr==0?"0x":"")
        << sigInfo->si_addr
        <<  " ";
      switch (sigInfo->si_code)
        {
        case SEGV_MAPERR:
          oss << "address not mapped to object";
          break;

        case SEGV_ACCERR:
          oss << "invalid permission for mapped object";
          break;

        default:
          oss << "code " << sigInfo->si_code;
          break;
        }
      break;

    case SIGBUS:
      oss
        << "Caught SIGBUS at "
        << (sigInfo->si_addr==0?"0x":"")
        << sigInfo->si_addr
        <<  " ";
      switch (sigInfo->si_code)
        {
        case BUS_ADRALN:
          oss << "invalid address alignment";
          break;

# if defined(BUS_ADRERR)
        case BUS_ADRERR:
          oss << "nonexistent physical address";
          break;
# endif

# if defined(BUS_OBJERR)
        case BUS_OBJERR:
          oss << "object-specific hardware error";
          break;
# endif

# if defined(BUS_MCEERR_AR)
        case BUS_MCEERR_AR:
          oss << "Hardware memory error consumed on a machine check; action required.";
          break;
# endif

# if defined(BUS_MCEERR_AO)
        case BUS_MCEERR_AO:
          oss << "Hardware memory error detected in process but not consumed; action optional.";
          break;
# endif

        default:
          oss << "code " << sigInfo->si_code;
          break;
        }
      break;

    case SIGILL:
      oss
        << "Caught SIGILL at "
        << (sigInfo->si_addr==0?"0x":"")
        << sigInfo->si_addr
        <<  " ";
      switch (sigInfo->si_code)
        {
        case ILL_ILLOPC:
          oss << "illegal opcode";
          break;

# if defined(ILL_ILLOPN)
        case ILL_ILLOPN:
          oss << "illegal operand";
          break;
# endif

# if defined(ILL_ILLADR)
        case ILL_ILLADR:
          oss << "illegal addressing mode.";
          break;
# endif

        case ILL_ILLTRP:
          oss << "illegal trap";
          break;

        case ILL_PRVOPC:
          oss << "privileged opcode";
          break;

# if defined(ILL_PRVREG)
        case ILL_PRVREG:
          oss << "privileged register";
          break;
# endif

# if defined(ILL_COPROC)
        case ILL_COPROC:
          oss << "co-processor error";
          break;
# endif

# if defined(ILL_BADSTK)
        case ILL_BADSTK:
          oss << "internal stack error";
          break;
# endif

        default:
          oss << "code " << sigInfo->si_code;
          break;
        }
      break;

    default:
      oss << "Caught " << sigNo << " code " << sigInfo->si_code;
      break;
    }
  oss
    << std::endl
    << "Program Stack:" << std::endl
    << SystemInformationImplementation::GetProgramStack(2,0)
    << "=========================================================" << std::endl;
  std::cerr << oss.str() << std::endl;

  // restore the previously registered handlers
  // and abort
  SystemInformationImplementation::SetStackTraceOnError(0);
  abort();
#else
  // avoid warning C4100
  (void)sigNo;
  (void)sigInfo;
#endif
}
#endif

#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
#define safes(_arg)((_arg)?(_arg):"???")

// Description:
// A container for symbol properties. Each instance
// must be Initialized.
class SymbolProperties
{
public:
  SymbolProperties();

  // Description:
  // The SymbolProperties instance must be initialized by
  // passing a stack address.
  void Initialize(void *address);

  // Description:
  // Get the symbol's stack address.
  void *GetAddress() const { return this->Address; }

  // Description:
  // If not set paths will be removed. eg, from a binary
  // or source file.
  void SetReportPath(int rp){ this->ReportPath=rp; }

  // Description:
  // Set/Get the name of the binary file that the symbol
  // is found in.
  void SetBinary(const char *binary)
    { this->Binary=safes(binary); }

  std::string GetBinary() const;

  // Description:
  // Set the name of the function that the symbol is found in.
  // If c++ demangling is supported it will be demangled.
  void SetFunction(const char *function)
    { this->Function=this->Demangle(function); }

  std::string GetFunction() const
    { return this->Function; }

  // Description:
  // Set/Get the name of the source file where the symbol
  // is defined.
  void SetSourceFile(const char *sourcefile)
    { this->SourceFile=safes(sourcefile); }

  std::string GetSourceFile() const
    { return this->GetFileName(this->SourceFile); }

  // Description:
  // Set/Get the line number where the symbol is defined
  void SetLineNumber(long linenumber){ this->LineNumber=linenumber; }
  long GetLineNumber() const { return this->LineNumber; }

  // Description:
  // Set the address where the biinary image is mapped
  // into memory.
  void SetBinaryBaseAddress(void *address)
    { this->BinaryBaseAddress=address; }

private:
  void *GetRealAddress() const
    { return (void*)((char*)this->Address-(char*)this->BinaryBaseAddress); }

  std::string GetFileName(const std::string &path) const;
  std::string Demangle(const char *symbol) const;

private:
  std::string Binary;
  void *BinaryBaseAddress;
  void *Address;
  std::string SourceFile;
  std::string Function;
  long LineNumber;
  int ReportPath;
};

// --------------------------------------------------------------------------
std::ostream &operator<<(
      std::ostream &os,
      const SymbolProperties &sp)
{
#if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
  os
    << std::hex << sp.GetAddress() << " : "
    << sp.GetFunction()
    << " [(" << sp.GetBinary() << ") "
    << sp.GetSourceFile() << ":"
    << std::dec << sp.GetLineNumber() << "]";
#elif defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
  void *addr = sp.GetAddress();
  char **syminfo = backtrace_symbols(&addr,1);
  os << safes(syminfo[0]);
  free(syminfo);
#else
  (void)os;
  (void)sp;
#endif
  return os;
}

// --------------------------------------------------------------------------
SymbolProperties::SymbolProperties()
{
  // not using an initializer list
  // to avoid some PGI compiler warnings
  this->SetBinary("???");
  this->SetBinaryBaseAddress(NULL);
  this->Address = NULL;
  this->SetSourceFile("???");
  this->SetFunction("???");
  this->SetLineNumber(-1);
  this->SetReportPath(0);
  // avoid PGI compiler warnings
  this->GetRealAddress();
  this->GetFunction();
  this->GetSourceFile();
  this->GetLineNumber();
}

// --------------------------------------------------------------------------
std::string SymbolProperties::GetFileName(const std::string &path) const
{
  std::string file(path);
  if (!this->ReportPath)
    {
    size_t at = file.rfind("/");
    if (at!=std::string::npos)
      {
      file = file.substr(at+1,std::string::npos);
      }
    }
  return file;
}

// --------------------------------------------------------------------------
std::string SymbolProperties::GetBinary() const
{
// only linux has proc fs
#if defined(__linux__)
  if (this->Binary=="/proc/self/exe")
    {
    std::string binary;
    char buf[1024]={'\0'};
    ssize_t ll=0;
    if ((ll=readlink("/proc/self/exe",buf,1024))>0)
      {
      buf[ll]='\0';
      binary=buf;
      }
    else
      {
      binary="/proc/self/exe";
      }
    return this->GetFileName(binary);
    }
#endif
  return this->GetFileName(this->Binary);
}

// --------------------------------------------------------------------------
std::string SymbolProperties::Demangle(const char *symbol) const
{
  std::string result = safes(symbol);
#if defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
  int status = 0;
  size_t bufferLen = 1024;
  char *buffer = (char*)malloc(1024);
  char *demangledSymbol =
    abi::__cxa_demangle(symbol, buffer, &bufferLen, &status);
  if (!status)
    {
    result = demangledSymbol;
    }
  free(buffer);
#else
  (void)symbol;
#endif
  return result;
}

// --------------------------------------------------------------------------
void SymbolProperties::Initialize(void *address)
{
  this->Address = address;
#if defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
  // first fallback option can demangle c++ functions
  Dl_info info;
  int ierr=dladdr(this->Address,&info);
  if (ierr && info.dli_sname && info.dli_saddr)
    {
    this->SetBinary(info.dli_fname);
    this->SetFunction(info.dli_sname);
    }
#else
  // second fallback use builtin backtrace_symbols
  // to decode the bactrace.
#endif
}
#endif // don't define this class if we're not using it

// --------------------------------------------------------------------------
#if defined(_WIN32) || defined(__CYGWIN__)
# define KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes
#endif
#if defined(_MSC_VER) && _MSC_VER < 1310
# undef KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes
#endif
#if defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes)
double calculateCPULoad(unsigned __int64 idleTicks,
                        unsigned __int64 totalTicks)
{
  static double previousLoad = -0.0;
  static unsigned __int64 previousIdleTicks = 0;
  static unsigned __int64 previousTotalTicks = 0;

  unsigned __int64 const idleTicksSinceLastTime =
    idleTicks - previousIdleTicks;
  unsigned __int64 const totalTicksSinceLastTime =
    totalTicks - previousTotalTicks;

  double load;
  if (previousTotalTicks == 0 || totalTicksSinceLastTime == 0)
    {
    // No new information.  Use previous result.
    load = previousLoad;
    }
  else
    {
    // Calculate load since last time.
    load = 1.0 - double(idleTicksSinceLastTime) / totalTicksSinceLastTime;

    // Smooth if possible.
    if (previousLoad > 0)
      {
      load = 0.25 * load + 0.75 * previousLoad;
      }
    }

  previousLoad = load;
  previousIdleTicks = idleTicks;
  previousTotalTicks = totalTicks;

  return load;
}

unsigned __int64 fileTimeToUInt64(FILETIME const& ft)
{
  LARGE_INTEGER out;
  out.HighPart = ft.dwHighDateTime;
  out.LowPart = ft.dwLowDateTime;
  return out.QuadPart;
}
#endif

} // anonymous namespace


SystemInformationImplementation::SystemInformationImplementation()
{
  this->TotalVirtualMemory = 0;
  this->AvailableVirtualMemory = 0;
  this->TotalPhysicalMemory = 0;
  this->AvailablePhysicalMemory = 0;
  this->CurrentPositionInFile = 0;
  this->ChipManufacturer = UnknownManufacturer;
  memset(&this->Features, 0, sizeof(CPUFeatures));
  this->ChipID.Type = 0;
  this->ChipID.Family = 0;
  this->ChipID.Model = 0;
  this->ChipID.Revision = 0;
  this->ChipID.ExtendedFamily = 0;
  this->ChipID.ExtendedModel = 0;
  this->CPUSpeedInMHz = 0;
  this->NumberOfLogicalCPU = 0;
  this->NumberOfPhysicalCPU = 0;
  this->OSName = "";
  this->Hostname = "";
  this->OSRelease = "";
  this->OSVersion = "";
  this->OSPlatform = "";
}

SystemInformationImplementation::~SystemInformationImplementation()
{
}

void SystemInformationImplementation::RunCPUCheck()
{
#ifdef _WIN32
  // Check to see if this processor supports CPUID.
  bool supportsCPUID = DoesCPUSupportCPUID();

  if (supportsCPUID)
    {
    // Retrieve the CPU details.
    RetrieveCPUIdentity();
    this->FindManufacturer();
    RetrieveCPUFeatures();
    }

  // These two may be called without support for the CPUID instruction.
  // (But if the instruction is there, they should be called *after*
  // the above call to RetrieveCPUIdentity... that's why the two if
  // blocks exist with the same "if (supportsCPUID)" logic...
  //
  if (!RetrieveCPUClockSpeed())
    {
    RetrieveClassicalCPUClockSpeed();
    }

  if (supportsCPUID)
    {
    // Retrieve cache information.
    if (!RetrieveCPUCacheDetails())
      {
      RetrieveClassicalCPUCacheDetails();
      }

    // Retrieve the extended CPU details.
    if (!RetrieveExtendedCPUIdentity())
      {
      RetrieveClassicalCPUIdentity();
      }

    RetrieveExtendedCPUFeatures();
    RetrieveCPUPowerManagement();

    // Now attempt to retrieve the serial number (if possible).
    RetrieveProcessorSerialNumber();
    }

  this->CPUCount();

#elif defined(__APPLE__)
  this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
  this->QuerySolarisProcessor();
#elif defined(__HAIKU__)
  this->QueryHaikuInfo();
#elif defined(__QNX__)
  this->QueryQNXProcessor();
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
  this->QueryBSDProcessor();
#elif defined(__hpux)
  this->QueryHPUXProcessor();
#elif defined(__linux) || defined(__CYGWIN__)
  this->RetreiveInformationFromCpuInfoFile();
#else
  this->QueryProcessor();
#endif
}

void SystemInformationImplementation::RunOSCheck()
{
  this->QueryOSInformation();
}

void SystemInformationImplementation::RunMemoryCheck()
{
#if defined(__APPLE__)
  this->ParseSysCtl();
#elif defined (__SVR4) && defined (__sun)
  this->QuerySolarisMemory();
#elif defined(__HAIKU__)
  this->QueryHaikuInfo();
#elif defined(__QNX__)
  this->QueryQNXMemory();
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
  this->QueryBSDMemory();
#elif defined(__CYGWIN__)
  this->QueryCygwinMemory();
#elif defined(_WIN32)
  this->QueryWindowsMemory();
#elif defined(__hpux)
  this->QueryHPUXMemory();
#elif defined(__linux)
  this->QueryLinuxMemory();
#elif defined(_AIX)
  this->QueryAIXMemory();
#else
  this->QueryMemory();
#endif
}

/** Get the vendor string */
const char * SystemInformationImplementation::GetVendorString()
{
  return this->ChipID.Vendor.c_str();
}

/** Get the OS Name */
const char * SystemInformationImplementation::GetOSName()
{
  return this->OSName.c_str();
}

/** Get the hostname */
const char* SystemInformationImplementation::GetHostname()
{
  if (this->Hostname.empty())
    {
    this->Hostname="localhost";
#if defined(_WIN32)
    WORD wVersionRequested;
    WSADATA wsaData;
    char name[255];
    wVersionRequested = MAKEWORD(2,0);
    if ( WSAStartup( wVersionRequested, &wsaData ) == 0 )
      {
      gethostname(name,sizeof(name));
      WSACleanup( );
      }
    this->Hostname = name;
#else
    struct utsname unameInfo;
    int errorFlag = uname(&unameInfo);
    if(errorFlag == 0)
      {
      this->Hostname = unameInfo.nodename;
      }
#endif
    }
  return this->Hostname.c_str();
}

/** Get the FQDN */
int SystemInformationImplementation::GetFullyQualifiedDomainName(
      std::string &fqdn)
{
  // in the event of absolute failure return localhost.
  fqdn="localhost";

#if defined(_WIN32)
  int ierr;
  // TODO - a more robust implementation for windows, see comments
  // in unix implementation.
  WSADATA wsaData;
  WORD ver=MAKEWORD(2,0);
  ierr=WSAStartup(ver,&wsaData);
  if (ierr)
    {
    return -1;
    }

  char base[256]={'\0'};
  ierr=gethostname(base,256);
  if (ierr)
    {
    WSACleanup();
    return -2;
    }
  fqdn=base;

  HOSTENT *hent=gethostbyname(base);
  if (hent)
    {
    fqdn=hent->h_name;
    }

  WSACleanup();
  return 0;

#elif defined(KWSYS_SYSTEMINFORMATION_IMPLEMENT_FQDN)
  // gethostname typical returns an alias for loopback interface
  // we want the fully qualified domain name. Because there are
  // any number of interfaces on this system we look for the
  // first of these that contains the name returned by gethostname
  // and is longer. failing that we return gethostname and indicate
  // with a failure code. Return of a failure code is not necessarilly
  // an indication of an error. for instance gethostname may return
  // the fully qualified domain name, or there may not be one if the
  // system lives on a private network such as in the case of a cluster
  // node.

  int ierr=0;
  char base[NI_MAXHOST];
  ierr=gethostname(base,NI_MAXHOST);
  if (ierr)
    {
    return -1;
    }
  size_t baseSize=strlen(base);
  fqdn=base;

  struct ifaddrs *ifas;
  struct ifaddrs *ifa;
  ierr=getifaddrs(&ifas);
  if (ierr)
    {
    return -2;
    }

  for (ifa=ifas; ifa!=NULL; ifa=ifa->ifa_next)
    {
    int fam = ifa->ifa_addr? ifa->ifa_addr->sa_family : -1;
    if ((fam==AF_INET) || (fam==AF_INET6))
      {
      char host[NI_MAXHOST]={'\0'};

      const size_t addrlen
        = (fam==AF_INET?sizeof(struct sockaddr_in):sizeof(struct sockaddr_in6));

      ierr=getnameinfo(
            ifa->ifa_addr,
            static_cast<socklen_t>(addrlen),
            host,
            NI_MAXHOST,
            NULL,
            0,
            NI_NAMEREQD);
      if (ierr)
        {
        // don't report the failure now since we may succeed on another
        // interface. If all attempts fail then return the failure code.
        ierr=-3;
        continue;
        }

      std::string candidate=host;
      if ((candidate.find(base)!=std::string::npos) && baseSize<candidate.size())
        {
        // success, stop now.
        ierr=0;
        fqdn=candidate;
        break;
        }
      }
    }
  freeifaddrs(ifas);

  return ierr;
#else
  /* TODO: Implement on more platforms.  */
  fqdn=this->GetHostname();
  return -1;
#endif
}

/** Get the OS release */
const char* SystemInformationImplementation::GetOSRelease()
{
  return this->OSRelease.c_str();
}

/** Get the OS version */
const char* SystemInformationImplementation::GetOSVersion()
{
  return this->OSVersion.c_str();
}

/** Get the OS platform */
const char* SystemInformationImplementation::GetOSPlatform()
{
  return this->OSPlatform.c_str();
}

/** Get the vendor ID */
const char * SystemInformationImplementation::GetVendorID()
{
  // Return the vendor ID.
  switch (this->ChipManufacturer)
    {
    case Intel:
      return "Intel Corporation";
    case AMD:
      return "Advanced Micro Devices";
    case NSC:
      return "National Semiconductor";
    case Cyrix:
      return "Cyrix Corp., VIA Inc.";
    case NexGen:
      return "NexGen Inc., Advanced Micro Devices";
    case IDT:
      return "IDT\\Centaur, Via Inc.";
    case UMC:
      return "United Microelectronics Corp.";
    case Rise:
      return "Rise";
    case Transmeta:
      return "Transmeta";
    case Sun:
      return "Sun Microelectronics";
    case IBM:
      return "IBM";
    case Motorola:
      return "Motorola";
    case HP:
      return "Hewlett-Packard";
    case UnknownManufacturer:
    default:
      return "Unknown Manufacturer";
    }
}

/** Return the type ID of the CPU */
std::string SystemInformationImplementation::GetTypeID()
{
  std::ostringstream str;
  str << this->ChipID.Type;
  return str.str();
}

/** Return the family of the CPU present */
std::string SystemInformationImplementation::GetFamilyID()
{
  std::ostringstream str;
  str << this->ChipID.Family;
  return str.str();
}

// Return the model of CPU present */
std::string SystemInformationImplementation::GetModelID()
{
  std::ostringstream str;
  str << this->ChipID.Model;
  return str.str();
}

// Return the model name of CPU present */
std::string SystemInformationImplementation::GetModelName()
{
  return this->ChipID.ModelName;
}

/** Return the stepping code of the CPU present. */
std::string SystemInformationImplementation::GetSteppingCode()
{
  std::ostringstream str;
  str << this->ChipID.Revision;
  return str.str();
}

/** Return the stepping code of the CPU present. */
const char * SystemInformationImplementation::GetExtendedProcessorName()
{
  return this->ChipID.ProcessorName.c_str();
}

/** Return the serial number of the processor
 *  in hexadecimal: xxxx-xxxx-xxxx-xxxx-xxxx-xxxx. */
const char * SystemInformationImplementation::GetProcessorSerialNumber()
{
  return this->ChipID.SerialNumber.c_str();
}

/** Return the logical processors per physical */
unsigned int SystemInformationImplementation::GetLogicalProcessorsPerPhysical()
{
  return this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical;
}

/** Return the processor clock frequency. */
float SystemInformationImplementation::GetProcessorClockFrequency()
{
  return this->CPUSpeedInMHz;
}

/**  Return the APIC ID. */
int SystemInformationImplementation::GetProcessorAPICID()
{
  return this->Features.ExtendedFeatures.APIC_ID;
}

/** Return the L1 cache size. */
int SystemInformationImplementation::GetProcessorCacheSize()
{
  return this->Features.L1CacheSize;
}

/** Return the chosen cache size. */
int SystemInformationImplementation::GetProcessorCacheXSize(long int dwCacheID)
{
  switch (dwCacheID)
    {
    case L1CACHE_FEATURE:
      return this->Features.L1CacheSize;
    case L2CACHE_FEATURE:
      return this->Features.L2CacheSize;
    case L3CACHE_FEATURE:
      return this->Features.L3CacheSize;
    }
  return -1;
}


bool SystemInformationImplementation::DoesCPUSupportFeature(long int dwFeature)
{
  bool bHasFeature = false;

  // Check for MMX instructions.
  if (((dwFeature & MMX_FEATURE) != 0) && this->Features.HasMMX) bHasFeature = true;

  // Check for MMX+ instructions.
  if (((dwFeature & MMX_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.HasMMXPlus) bHasFeature = true;

  // Check for SSE FP instructions.
  if (((dwFeature & SSE_FEATURE) != 0) && this->Features.HasSSE) bHasFeature = true;

  // Check for SSE FP instructions.
  if (((dwFeature & SSE_FP_FEATURE) != 0) && this->Features.HasSSEFP) bHasFeature = true;

  // Check for SSE MMX instructions.
  if (((dwFeature & SSE_MMX_FEATURE) != 0) && this->Features.ExtendedFeatures.HasSSEMMX) bHasFeature = true;

  // Check for SSE2 instructions.
  if (((dwFeature & SSE2_FEATURE) != 0) && this->Features.HasSSE2) bHasFeature = true;

  // Check for 3DNow! instructions.
  if (((dwFeature & AMD_3DNOW_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNow) bHasFeature = true;

  // Check for 3DNow+ instructions.
  if (((dwFeature & AMD_3DNOW_PLUS_FEATURE) != 0) && this->Features.ExtendedFeatures.Has3DNowPlus) bHasFeature = true;

  // Check for IA64 instructions.
  if (((dwFeature & IA64_FEATURE) != 0) && this->Features.HasIA64) bHasFeature = true;

  // Check for MP capable.
  if (((dwFeature & MP_CAPABLE) != 0) && this->Features.ExtendedFeatures.SupportsMP) bHasFeature = true;

  // Check for a serial number for the processor.
  if (((dwFeature & SERIALNUMBER_FEATURE) != 0) && this->Features.HasSerial) bHasFeature = true;

  // Check for a local APIC in the processor.
  if (((dwFeature & APIC_FEATURE) != 0) && this->Features.HasAPIC) bHasFeature = true;

  // Check for CMOV instructions.
  if (((dwFeature & CMOV_FEATURE) != 0) && this->Features.HasCMOV) bHasFeature = true;

  // Check for MTRR instructions.
  if (((dwFeature & MTRR_FEATURE) != 0) && this->Features.HasMTRR) bHasFeature = true;

  // Check for L1 cache size.
  if (((dwFeature & L1CACHE_FEATURE) != 0) && (this->Features.L1CacheSize != -1)) bHasFeature = true;

  // Check for L2 cache size.
  if (((dwFeature & L2CACHE_FEATURE) != 0) && (this->Features.L2CacheSize != -1)) bHasFeature = true;

  // Check for L3 cache size.
  if (((dwFeature & L3CACHE_FEATURE) != 0) && (this->Features.L3CacheSize != -1)) bHasFeature = true;

  // Check for ACPI capability.
  if (((dwFeature & ACPI_FEATURE) != 0) && this->Features.HasACPI) bHasFeature = true;

  // Check for thermal monitor support.
  if (((dwFeature & THERMALMONITOR_FEATURE) != 0) && this->Features.HasThermal) bHasFeature = true;

  // Check for temperature sensing diode support.
  if (((dwFeature & TEMPSENSEDIODE_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode) bHasFeature = true;

  // Check for frequency ID support.
  if (((dwFeature & FREQUENCYID_FEATURE) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID) bHasFeature = true;

  // Check for voltage ID support.
  if (((dwFeature & VOLTAGEID_FREQUENCY) != 0) && this->Features.ExtendedFeatures.PowerManagement.HasVoltageID) bHasFeature = true;

  return bHasFeature;
}


void SystemInformationImplementation::Delay(unsigned int uiMS)
{
#ifdef _WIN32
  LARGE_INTEGER Frequency, StartCounter, EndCounter;
  __int64 x;

  // Get the frequency of the high performance counter.
  if (!QueryPerformanceFrequency (&Frequency)) return;
  x = Frequency.QuadPart / 1000 * uiMS;

  // Get the starting position of the counter.
  QueryPerformanceCounter (&StartCounter);

  do {
    // Get the ending position of the counter.
    QueryPerformanceCounter (&EndCounter);
    } while (EndCounter.QuadPart - StartCounter.QuadPart < x);
#endif
  (void)uiMS;
}


bool SystemInformationImplementation::DoesCPUSupportCPUID()
{
#if USE_CPUID
  int dummy[4] = { 0, 0, 0, 0 };

#if USE_ASM_INSTRUCTIONS
  return call_cpuid(0, dummy);
#else
  call_cpuid(0, dummy);
  return dummy[0] || dummy[1] || dummy[2] || dummy[3];
#endif
#else
  // Assume no cpuid instruction.
  return false;
#endif
}


bool SystemInformationImplementation::RetrieveCPUFeatures()
{
#if USE_CPUID
  int cpuinfo[4] = { 0, 0, 0, 0 };

  if (!call_cpuid(1, cpuinfo))
    {
    return false;
    }

  // Retrieve the features of CPU present.
  this->Features.HasFPU =     ((cpuinfo[3] & 0x00000001) != 0);    // FPU Present --> Bit 0
  this->Features.HasTSC =     ((cpuinfo[3] & 0x00000010) != 0);    // TSC Present --> Bit 4
  this->Features.HasAPIC =    ((cpuinfo[3] & 0x00000200) != 0);    // APIC Present --> Bit 9
  this->Features.HasMTRR =    ((cpuinfo[3] & 0x00001000) != 0);    // MTRR Present --> Bit 12
  this->Features.HasCMOV =    ((cpuinfo[3] & 0x00008000) != 0);    // CMOV Present --> Bit 15
  this->Features.HasSerial =  ((cpuinfo[3] & 0x00040000) != 0);    // Serial Present --> Bit 18
  this->Features.HasACPI =    ((cpuinfo[3] & 0x00400000) != 0);    // ACPI Capable --> Bit 22
  this->Features.HasMMX =     ((cpuinfo[3] & 0x00800000) != 0);    // MMX Present --> Bit 23
  this->Features.HasSSE =     ((cpuinfo[3] & 0x02000000) != 0);    // SSE Present --> Bit 25
  this->Features.HasSSE2 =    ((cpuinfo[3] & 0x04000000) != 0);    // SSE2 Present --> Bit 26
  this->Features.HasThermal = ((cpuinfo[3] & 0x20000000) != 0);    // Thermal Monitor Present --> Bit 29
  this->Features.HasIA64 =    ((cpuinfo[3] & 0x40000000) != 0);    // IA64 Present --> Bit 30

#if USE_ASM_INSTRUCTIONS
  // Retrieve extended SSE capabilities if SSE is available.
  if (this->Features.HasSSE) {

    // Attempt to __try some SSE FP instructions.
    __try
      {
      // Perform: orps xmm0, xmm0
      _asm
        {
        _emit 0x0f
        _emit 0x56
        _emit 0xc0
        }

      // SSE FP capable processor.
      this->Features.HasSSEFP = true;
      }
    __except(1)
      {
      // bad instruction - processor or OS cannot handle SSE FP.
      this->Features.HasSSEFP = false;
      }
    }
  else
    {
    // Set the advanced SSE capabilities to not available.
    this->Features.HasSSEFP = false;
    }
#else
  this->Features.HasSSEFP = false;
#endif

  // Retrieve Intel specific extended features.
  if (this->ChipManufacturer == Intel)
    {
    this->Features.ExtendedFeatures.SupportsHyperthreading =  ((cpuinfo[3] &  0x10000000) != 0);  // Intel specific: Hyperthreading --> Bit 28
    this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical = (this->Features.ExtendedFeatures.SupportsHyperthreading) ? ((cpuinfo[1] & 0x00FF0000) >> 16) : 1;

    if ((this->Features.ExtendedFeatures.SupportsHyperthreading) && (this->Features.HasAPIC))
      {
      // Retrieve APIC information if there is one present.
      this->Features.ExtendedFeatures.APIC_ID = ((cpuinfo[1] & 0xFF000000) >> 24);
      }
    }

  return true;

#else
  return false;
#endif
}


/** Find the manufacturer given the vendor id */
void SystemInformationImplementation::FindManufacturer(const std::string& family)
{
  if (this->ChipID.Vendor == "GenuineIntel")       this->ChipManufacturer = Intel;        // Intel Corp.
  else if (this->ChipID.Vendor == "UMC UMC UMC ")  this->ChipManufacturer = UMC;          // United Microelectronics Corp.
  else if (this->ChipID.Vendor == "AuthenticAMD")  this->ChipManufacturer = AMD;          // Advanced Micro Devices
  else if (this->ChipID.Vendor == "AMD ISBETTER")  this->ChipManufacturer = AMD;          // Advanced Micro Devices (1994)
  else if (this->ChipID.Vendor == "CyrixInstead")  this->ChipManufacturer = Cyrix;        // Cyrix Corp., VIA Inc.
  else if (this->ChipID.Vendor == "NexGenDriven")  this->ChipManufacturer = NexGen;        // NexGen Inc. (now AMD)
  else if (this->ChipID.Vendor == "CentaurHauls")  this->ChipManufacturer = IDT;          // IDT/Centaur (now VIA)
  else if (this->ChipID.Vendor == "RiseRiseRise")  this->ChipManufacturer = Rise;        // Rise
  else if (this->ChipID.Vendor == "GenuineTMx86")  this->ChipManufacturer = Transmeta;      // Transmeta
  else if (this->ChipID.Vendor == "TransmetaCPU")  this->ChipManufacturer = Transmeta;      // Transmeta
  else if (this->ChipID.Vendor == "Geode By NSC")  this->ChipManufacturer = NSC;          // National Semiconductor
  else if (this->ChipID.Vendor == "Sun")           this->ChipManufacturer = Sun;          // Sun Microelectronics
  else if (this->ChipID.Vendor == "IBM")           this->ChipManufacturer = IBM;          // IBM Microelectronics
  else if (this->ChipID.Vendor == "Hewlett-Packard") this->ChipManufacturer = HP;         // Hewlett-Packard
  else if (this->ChipID.Vendor == "Motorola")      this->ChipManufacturer = Motorola;          // Motorola Microelectronics
  else if (family.substr(0, 7) == "PA-RISC")       this->ChipManufacturer = HP;           // Hewlett-Packard
  else                                             this->ChipManufacturer = UnknownManufacturer;  // Unknown manufacturer
}


/** */
bool SystemInformationImplementation::RetrieveCPUIdentity()
{
#if USE_CPUID
  int localCPUVendor[4];
  int localCPUSignature[4];

  if (!call_cpuid(0, localCPUVendor))
    {
    return false;
    }
  if (!call_cpuid(1, localCPUSignature))
    {
    return false;
    }

  // Process the returned information.
  //    ; eax = 0 --> eax: maximum value of CPUID instruction.
  //    ;        ebx: part 1 of 3; CPU signature.
  //    ;        edx: part 2 of 3; CPU signature.
  //    ;        ecx: part 3 of 3; CPU signature.
  char vbuf[13];
  memcpy (&(vbuf[0]), &(localCPUVendor[1]), sizeof (int));
  memcpy (&(vbuf[4]), &(localCPUVendor[3]), sizeof (int));
  memcpy (&(vbuf[8]), &(localCPUVendor[2]), sizeof (int));
  vbuf[12] = '\0';
  this->ChipID.Vendor = vbuf;

  // Retrieve the family of CPU present.
  //    ; eax = 1 --> eax: CPU ID - bits 31..16 - unused, bits 15..12 - type, bits 11..8 - family, bits 7..4 - model, bits 3..0 - mask revision
  //    ;        ebx: 31..24 - default APIC ID, 23..16 - logical processor ID, 15..8 - CFLUSH chunk size , 7..0 - brand ID
  //    ;        edx: CPU feature flags
  this->ChipID.ExtendedFamily = ((localCPUSignature[0] & 0x0FF00000) >> 20);  // Bits 27..20 Used
  this->ChipID.ExtendedModel =  ((localCPUSignature[0] & 0x000F0000) >> 16);  // Bits 19..16 Used
  this->ChipID.Type =           ((localCPUSignature[0] & 0x0000F000) >> 12);  // Bits 15..12 Used
  this->ChipID.Family =         ((localCPUSignature[0] & 0x00000F00) >> 8);    // Bits 11..8 Used
  this->ChipID.Model =          ((localCPUSignature[0] & 0x000000F0) >> 4);    // Bits 7..4 Used
  this->ChipID.Revision =       ((localCPUSignature[0] & 0x0000000F) >> 0);    // Bits 3..0 Used

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUCacheDetails()
{
#if USE_CPUID
  int L1Cache[4] = { 0, 0, 0, 0 };
  int L2Cache[4] = { 0, 0, 0, 0 };

  // Check to see if what we are about to do is supported...
  if (RetrieveCPUExtendedLevelSupport (0x80000005))
    {
    if (!call_cpuid(0x80000005, L1Cache))
      {
      return false;
      }
    // Save the L1 data cache size (in KB) from ecx: bits 31..24 as well as data cache size from edx: bits 31..24.
    this->Features.L1CacheSize = ((L1Cache[2] & 0xFF000000) >> 24);
    this->Features.L1CacheSize += ((L1Cache[3] & 0xFF000000) >> 24);
    }
  else
    {
    // Store -1 to indicate the cache could not be queried.
    this->Features.L1CacheSize = -1;
    }

  // Check to see if what we are about to do is supported...
  if (RetrieveCPUExtendedLevelSupport (0x80000006))
    {
    if (!call_cpuid(0x80000006, L2Cache))
      {
      return false;
      }
    // Save the L2 unified cache size (in KB) from ecx: bits 31..16.
    this->Features.L2CacheSize = ((L2Cache[2] & 0xFFFF0000) >> 16);
    }
  else
    {
    // Store -1 to indicate the cache could not be queried.
    this->Features.L2CacheSize = -1;
    }

  // Define L3 as being not present as we cannot test for it.
  this->Features.L3CacheSize = -1;

#endif

  // Return failure if we cannot detect either cache with this method.
  return ((this->Features.L1CacheSize == -1) && (this->Features.L2CacheSize == -1)) ? false : true;
}


/** */
bool SystemInformationImplementation::RetrieveClassicalCPUCacheDetails()
{
#if USE_CPUID
  int TLBCode = -1, TLBData = -1, L1Code = -1, L1Data = -1, L1Trace = -1, L2Unified = -1, L3Unified = -1;
  int TLBCacheData[4] = { 0, 0, 0, 0 };
  int TLBPassCounter = 0;
  int TLBCacheUnit = 0;


  do {
    if (!call_cpuid(2, TLBCacheData))
      {
      return false;
      }

    int bob = ((TLBCacheData[0] & 0x00FF0000) >> 16);
    (void)bob;
    // Process the returned TLB and cache information.
    for (int nCounter = 0; nCounter < TLBCACHE_INFO_UNITS; nCounter ++)
      {
      // First of all - decide which unit we are dealing with.
      switch (nCounter)
        {
        // eax: bits 8..15 : bits 16..23 : bits 24..31
        case 0: TLBCacheUnit = ((TLBCacheData[0] & 0x0000FF00) >> 8); break;
        case 1: TLBCacheUnit = ((TLBCacheData[0] & 0x00FF0000) >> 16); break;
        case 2: TLBCacheUnit = ((TLBCacheData[0] & 0xFF000000) >> 24); break;

        // ebx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
        case 3: TLBCacheUnit = ((TLBCacheData[1] & 0x000000FF) >> 0); break;
        case 4: TLBCacheUnit = ((TLBCacheData[1] & 0x0000FF00) >> 8); break;
        case 5: TLBCacheUnit = ((TLBCacheData[1] & 0x00FF0000) >> 16); break;
        case 6: TLBCacheUnit = ((TLBCacheData[1] & 0xFF000000) >> 24); break;

        // ecx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
        case 7: TLBCacheUnit = ((TLBCacheData[2] & 0x000000FF) >> 0); break;
        case 8: TLBCacheUnit = ((TLBCacheData[2] & 0x0000FF00) >> 8); break;
        case 9: TLBCacheUnit = ((TLBCacheData[2] & 0x00FF0000) >> 16); break;
        case 10: TLBCacheUnit = ((TLBCacheData[2] & 0xFF000000) >> 24); break;

        // edx: bits 0..7 : bits 8..15 : bits 16..23 : bits 24..31
        case 11: TLBCacheUnit = ((TLBCacheData[3] & 0x000000FF) >> 0); break;
        case 12: TLBCacheUnit = ((TLBCacheData[3] & 0x0000FF00) >> 8); break;
        case 13: TLBCacheUnit = ((TLBCacheData[3] & 0x00FF0000) >> 16); break;
        case 14: TLBCacheUnit = ((TLBCacheData[3] & 0xFF000000) >> 24); break;

        // Default case - an error has occurred.
        default: return false;
        }

      // Now process the resulting unit to see what it means....
      switch (TLBCacheUnit)
        {
        case 0x00: break;
        case 0x01: STORE_TLBCACHE_INFO (TLBCode, 4); break;
        case 0x02: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x03: STORE_TLBCACHE_INFO (TLBData, 4); break;
        case 0x04: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x06: STORE_TLBCACHE_INFO (L1Code, 8); break;
        case 0x08: STORE_TLBCACHE_INFO (L1Code, 16); break;
        case 0x0a: STORE_TLBCACHE_INFO (L1Data, 8); break;
        case 0x0c: STORE_TLBCACHE_INFO (L1Data, 16); break;
        case 0x10: STORE_TLBCACHE_INFO (L1Data, 16); break;      // <-- FIXME: IA-64 Only
        case 0x15: STORE_TLBCACHE_INFO (L1Code, 16); break;      // <-- FIXME: IA-64 Only
        case 0x1a: STORE_TLBCACHE_INFO (L2Unified, 96); break;    // <-- FIXME: IA-64 Only
        case 0x22: STORE_TLBCACHE_INFO (L3Unified, 512); break;
        case 0x23: STORE_TLBCACHE_INFO (L3Unified, 1024); break;
        case 0x25: STORE_TLBCACHE_INFO (L3Unified, 2048); break;
        case 0x29: STORE_TLBCACHE_INFO (L3Unified, 4096); break;
        case 0x39: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x3c: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x40: STORE_TLBCACHE_INFO (L2Unified, 0); break;    // <-- FIXME: No integrated L2 cache (P6 core) or L3 cache (P4 core).
        case 0x41: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x42: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x43: STORE_TLBCACHE_INFO (L2Unified, 512); break;
        case 0x44: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
        case 0x45: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
        case 0x50: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x51: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x52: STORE_TLBCACHE_INFO (TLBCode, 4096); break;
        case 0x5b: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x5c: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x5d: STORE_TLBCACHE_INFO (TLBData, 4096); break;
        case 0x66: STORE_TLBCACHE_INFO (L1Data, 8); break;
        case 0x67: STORE_TLBCACHE_INFO (L1Data, 16); break;
        case 0x68: STORE_TLBCACHE_INFO (L1Data, 32); break;
        case 0x70: STORE_TLBCACHE_INFO (L1Trace, 12); break;
        case 0x71: STORE_TLBCACHE_INFO (L1Trace, 16); break;
        case 0x72: STORE_TLBCACHE_INFO (L1Trace, 32); break;
        case 0x77: STORE_TLBCACHE_INFO (L1Code, 16); break;      // <-- FIXME: IA-64 Only
        case 0x79: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x7a: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x7b: STORE_TLBCACHE_INFO (L2Unified, 512); break;
        case 0x7c: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
        case 0x7e: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x81: STORE_TLBCACHE_INFO (L2Unified, 128); break;
        case 0x82: STORE_TLBCACHE_INFO (L2Unified, 256); break;
        case 0x83: STORE_TLBCACHE_INFO (L2Unified, 512); break;
        case 0x84: STORE_TLBCACHE_INFO (L2Unified, 1024); break;
        case 0x85: STORE_TLBCACHE_INFO (L2Unified, 2048); break;
        case 0x88: STORE_TLBCACHE_INFO (L3Unified, 2048); break;  // <-- FIXME: IA-64 Only
        case 0x89: STORE_TLBCACHE_INFO (L3Unified, 4096); break;  // <-- FIXME: IA-64 Only
        case 0x8a: STORE_TLBCACHE_INFO (L3Unified, 8192); break;  // <-- FIXME: IA-64 Only
        case 0x8d: STORE_TLBCACHE_INFO (L3Unified, 3096); break;  // <-- FIXME: IA-64 Only
        case 0x90: STORE_TLBCACHE_INFO (TLBCode, 262144); break;  // <-- FIXME: IA-64 Only
        case 0x96: STORE_TLBCACHE_INFO (TLBCode, 262144); break;  // <-- FIXME: IA-64 Only
        case 0x9b: STORE_TLBCACHE_INFO (TLBCode, 262144); break;  // <-- FIXME: IA-64 Only

        // Default case - an error has occurred.
        default: return false;
        }
      }

    // Increment the TLB pass counter.
    TLBPassCounter ++;
    } while ((TLBCacheData[0] & 0x000000FF) > TLBPassCounter);

  // Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
  if ((L1Code == -1) && (L1Data == -1) && (L1Trace == -1))
    {
    this->Features.L1CacheSize = -1;
    }
  else if ((L1Code == -1) && (L1Data == -1) && (L1Trace != -1))
    {
    this->Features.L1CacheSize = L1Trace;
    }
  else if ((L1Code != -1) && (L1Data == -1))
    {
    this->Features.L1CacheSize = L1Code;
    }
  else if ((L1Code == -1) && (L1Data != -1))
    {
    this->Features.L1CacheSize = L1Data;
    }
  else if ((L1Code != -1) && (L1Data != -1))
    {
    this->Features.L1CacheSize = L1Code + L1Data;
    }
  else
    {
    this->Features.L1CacheSize = -1;
    }

  // Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
  if (L2Unified == -1)
    {
    this->Features.L2CacheSize = -1;
    }
  else
    {
    this->Features.L2CacheSize = L2Unified;
    }

  // Ok - we now have the maximum TLB, L1, L2, and L3 sizes...
  if (L3Unified == -1)
    {
    this->Features.L3CacheSize = -1;
    }
  else
    {
    this->Features.L3CacheSize = L3Unified;
    }

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUClockSpeed()
{
  bool retrieved = false;

#if defined(_WIN32)
  unsigned int uiRepetitions = 1;
  unsigned int uiMSecPerRepetition = 50;
  __int64  i64Total = 0;
  __int64 i64Overhead = 0;

  // Check if the TSC implementation works at all
  if (this->Features.HasTSC &&
      GetCyclesDifference(SystemInformationImplementation::Delay,
                          uiMSecPerRepetition) > 0)
    {
    for (unsigned int nCounter = 0; nCounter < uiRepetitions; nCounter ++)
      {
      i64Total += GetCyclesDifference (SystemInformationImplementation::Delay,
                                       uiMSecPerRepetition);
      i64Overhead +=
        GetCyclesDifference (SystemInformationImplementation::DelayOverhead,
                             uiMSecPerRepetition);
      }

    // Calculate the MHz speed.
    i64Total -= i64Overhead;
    i64Total /= uiRepetitions;
    i64Total /= uiMSecPerRepetition;
    i64Total /= 1000;

    // Save the CPU speed.
    this->CPUSpeedInMHz = (float) i64Total;

    retrieved = true;
    }

  // If RDTSC is not supported, we fallback to trying to read this value
  // from the registry:
  if (!retrieved)
    {
    HKEY hKey = NULL;
    LONG err = RegOpenKeyExW(HKEY_LOCAL_MACHINE,
      L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
      KEY_READ, &hKey);

    if (ERROR_SUCCESS == err)
      {
      DWORD dwType = 0;
      DWORD data = 0;
      DWORD dwSize = sizeof(DWORD);

      err = RegQueryValueExW(hKey, L"~MHz", 0,
        &dwType, (LPBYTE) &data, &dwSize);

      if (ERROR_SUCCESS == err)
        {
        this->CPUSpeedInMHz = (float) data;
        retrieved = true;
        }

      RegCloseKey(hKey);
      hKey = NULL;
      }
    }
#endif

  return retrieved;
}


/** */
bool SystemInformationImplementation::RetrieveClassicalCPUClockSpeed()
{
#if USE_ASM_INSTRUCTIONS
  LARGE_INTEGER liStart, liEnd, liCountsPerSecond;
  double dFrequency, dDifference;

  // Attempt to get a starting tick count.
  QueryPerformanceCounter (&liStart);

  __try
    {
    _asm
      {
      mov eax, 0x80000000
      mov ebx, CLASSICAL_CPU_FREQ_LOOP
      Timer_Loop:
      bsf ecx,eax
      dec ebx
      jnz Timer_Loop
      }
    }
  __except(1)
    {
    return false;
    }

  // Attempt to get a starting tick count.
  QueryPerformanceCounter (&liEnd);

  // Get the difference...  NB: This is in seconds....
  QueryPerformanceFrequency (&liCountsPerSecond);
  dDifference = (((double) liEnd.QuadPart - (double) liStart.QuadPart) / (double) liCountsPerSecond.QuadPart);

  // Calculate the clock speed.
  if (this->ChipID.Family == 3)
    {
    // 80386 processors....  Loop time is 115 cycles!
    dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 115) / dDifference) / 1000000);
    }
  else if (this->ChipID.Family == 4)
    {
    // 80486 processors....  Loop time is 47 cycles!
    dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 47) / dDifference) / 1000000);
    }
  else if (this->ChipID.Family == 5)
    {
    // Pentium processors....  Loop time is 43 cycles!
    dFrequency = (((CLASSICAL_CPU_FREQ_LOOP * 43) / dDifference) / 1000000);
    }

  // Save the clock speed.
  this->Features.CPUSpeed = (int) dFrequency;

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUExtendedLevelSupport(int CPULevelToCheck)
{
  int cpuinfo[4] = { 0, 0, 0, 0 };

  // The extended CPUID is supported by various vendors starting with the following CPU models:
  //
  //    Manufacturer & Chip Name      |    Family     Model    Revision
  //
  //    AMD K6, K6-2                  |       5       6      x
  //    Cyrix GXm, Cyrix III "Joshua" |       5       4      x
  //    IDT C6-2                      |       5       8      x
  //    VIA Cyrix III                 |       6       5      x
  //    Transmeta Crusoe              |       5       x      x
  //    Intel Pentium 4               |       f       x      x
  //

  // We check to see if a supported processor is present...
  if (this->ChipManufacturer == AMD)
    {
    if (this->ChipID.Family < 5) return false;
    if ((this->ChipID.Family == 5) && (this->ChipID.Model < 6)) return false;
    }
  else if (this->ChipManufacturer == Cyrix)
    {
    if (this->ChipID.Family < 5) return false;
    if ((this->ChipID.Family == 5) && (this->ChipID.Model < 4)) return false;
    if ((this->ChipID.Family == 6) && (this->ChipID.Model < 5)) return false;
    }
  else if (this->ChipManufacturer == IDT)
    {
    if (this->ChipID.Family < 5) return false;
    if ((this->ChipID.Family == 5) && (this->ChipID.Model < 8)) return false;
    }
  else if (this->ChipManufacturer == Transmeta)
    {
    if (this->ChipID.Family < 5) return false;
    }
  else if (this->ChipManufacturer == Intel)
    {
    if (this->ChipID.Family < 0xf)
      {
      return false;
      }
    }

#if USE_CPUID
  if (!call_cpuid(0x80000000, cpuinfo))
    {
    return false;
    }
#endif

  // Now we have to check the level wanted vs level returned...
  int nLevelWanted = (CPULevelToCheck & 0x7FFFFFFF);
  int nLevelReturn = (cpuinfo[0] & 0x7FFFFFFF);

  // Check to see if the level provided is supported...
  if (nLevelWanted > nLevelReturn)
    {
    return false;
    }

  return true;
}


/** */
bool SystemInformationImplementation::RetrieveExtendedCPUFeatures()
{

  // Check that we are not using an Intel processor as it does not support this.
  if (this->ChipManufacturer == Intel)
    {
    return false;
    }

  // Check to see if what we are about to do is supported...
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000001)))
    {
    return false;
    }

#if USE_CPUID
  int localCPUExtendedFeatures[4] = { 0, 0, 0, 0 };

  if (!call_cpuid(0x80000001, localCPUExtendedFeatures))
    {
    return false;
    }

  // Retrieve the extended features of CPU present.
  this->Features.ExtendedFeatures.Has3DNow =     ((localCPUExtendedFeatures[3] & 0x80000000) != 0);  // 3DNow Present --> Bit 31.
  this->Features.ExtendedFeatures.Has3DNowPlus = ((localCPUExtendedFeatures[3] & 0x40000000) != 0);  // 3DNow+ Present -- > Bit 30.
  this->Features.ExtendedFeatures.HasSSEMMX =    ((localCPUExtendedFeatures[3] & 0x00400000) != 0);  // SSE MMX Present --> Bit 22.
  this->Features.ExtendedFeatures.SupportsMP =   ((localCPUExtendedFeatures[3] & 0x00080000) != 0);  // MP Capable -- > Bit 19.

  // Retrieve AMD specific extended features.
  if (this->ChipManufacturer == AMD)
    {
    this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x00400000) != 0);  // AMD specific: MMX-SSE --> Bit 22
    }

  // Retrieve Cyrix specific extended features.
  if (this->ChipManufacturer == Cyrix)
    {
    this->Features.ExtendedFeatures.HasMMXPlus = ((localCPUExtendedFeatures[3] & 0x01000000) != 0);  // Cyrix specific: Extended MMX --> Bit 24
    }

  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveProcessorSerialNumber()
{
  // Check to see if the processor supports the processor serial number.
  if (!this->Features.HasSerial)
    {
    return false;
    }

#if USE_CPUID
  int SerialNumber[4];

  if (!call_cpuid(3, SerialNumber))
    {
    return false;
    }

  // Process the returned information.
  //    ; eax = 3 --> ebx: top 32 bits are the processor signature bits --> NB: Transmeta only ?!?
  //    ;        ecx: middle 32 bits are the processor signature bits
  //    ;        edx: bottom 32 bits are the processor signature bits
  char sn[128];
  sprintf (sn, "%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x",
       ((SerialNumber[1] & 0xff000000) >> 24),
       ((SerialNumber[1] & 0x00ff0000) >> 16),
       ((SerialNumber[1] & 0x0000ff00) >> 8),
       ((SerialNumber[1] & 0x000000ff) >> 0),
       ((SerialNumber[2] & 0xff000000) >> 24),
       ((SerialNumber[2] & 0x00ff0000) >> 16),
       ((SerialNumber[2] & 0x0000ff00) >> 8),
       ((SerialNumber[2] & 0x000000ff) >> 0),
       ((SerialNumber[3] & 0xff000000) >> 24),
       ((SerialNumber[3] & 0x00ff0000) >> 16),
       ((SerialNumber[3] & 0x0000ff00) >> 8),
       ((SerialNumber[3] & 0x000000ff) >> 0));
  this->ChipID.SerialNumber = sn;
  return true;

#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveCPUPowerManagement()
{
  // Check to see if what we are about to do is supported...
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000007)))
    {
    this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID = false;
    this->Features.ExtendedFeatures.PowerManagement.HasVoltageID = false;
    this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode = false;
    return false;
    }

#if USE_CPUID
  int localCPUPowerManagement[4] = { 0, 0, 0, 0 };

  if (!call_cpuid(0x80000007, localCPUPowerManagement))
    {
    return false;
    }

  // Check for the power management capabilities of the CPU.
  this->Features.ExtendedFeatures.PowerManagement.HasTempSenseDiode =  ((localCPUPowerManagement[3] & 0x00000001) != 0);
  this->Features.ExtendedFeatures.PowerManagement.HasFrequencyID =     ((localCPUPowerManagement[3] & 0x00000002) != 0);
  this->Features.ExtendedFeatures.PowerManagement.HasVoltageID =       ((localCPUPowerManagement[3] & 0x00000004) != 0);

  return true;

#else
  return false;
#endif
}

#if USE_CPUID
// Used only in USE_CPUID implementation below.
static void SystemInformationStripLeadingSpace(std::string& str)
{
  // Because some manufacturers have leading white space - we have to post-process the name.
  std::string::size_type pos = str.find_first_not_of(" ");
  if(pos != std::string::npos)
    {
    str = str.substr(pos);
    }
}
#endif

/** */
bool SystemInformationImplementation::RetrieveExtendedCPUIdentity()
{
  // Check to see if what we are about to do is supported...
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000002)))
    return false;
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000003)))
    return false;
  if (!RetrieveCPUExtendedLevelSupport(static_cast<int>(0x80000004)))
    return false;

#if USE_CPUID
  int CPUExtendedIdentity[12];

  if (!call_cpuid(0x80000002, CPUExtendedIdentity))
    {
    return false;
    }
  if (!call_cpuid(0x80000003, CPUExtendedIdentity + 4))
    {
    return false;
    }
  if (!call_cpuid(0x80000004, CPUExtendedIdentity + 8))
    {
    return false;
    }

  // Process the returned information.
  char nbuf[49];
  memcpy (&(nbuf[0]), &(CPUExtendedIdentity[0]), sizeof (int));
  memcpy (&(nbuf[4]), &(CPUExtendedIdentity[1]), sizeof (int));
  memcpy (&(nbuf[8]), &(CPUExtendedIdentity[2]), sizeof (int));
  memcpy (&(nbuf[12]), &(CPUExtendedIdentity[3]), sizeof (int));
  memcpy (&(nbuf[16]), &(CPUExtendedIdentity[4]), sizeof (int));
  memcpy (&(nbuf[20]), &(CPUExtendedIdentity[5]), sizeof (int));
  memcpy (&(nbuf[24]), &(CPUExtendedIdentity[6]), sizeof (int));
  memcpy (&(nbuf[28]), &(CPUExtendedIdentity[7]), sizeof (int));
  memcpy (&(nbuf[32]), &(CPUExtendedIdentity[8]), sizeof (int));
  memcpy (&(nbuf[36]), &(CPUExtendedIdentity[9]), sizeof (int));
  memcpy (&(nbuf[40]), &(CPUExtendedIdentity[10]), sizeof (int));
  memcpy (&(nbuf[44]), &(CPUExtendedIdentity[11]), sizeof (int));
  nbuf[48] = '\0';
  this->ChipID.ProcessorName = nbuf;
  this->ChipID.ModelName = nbuf;

  // Because some manufacturers have leading white space - we have to post-process the name.
  SystemInformationStripLeadingSpace(this->ChipID.ProcessorName);
  return true;
#else
  return false;
#endif
}


/** */
bool SystemInformationImplementation::RetrieveClassicalCPUIdentity()
{
  // Start by decided which manufacturer we are using....
  switch (this->ChipManufacturer)
    {
    case Intel:
      // Check the family / model / revision to determine the CPU ID.
      switch (this->ChipID.Family) {
        case 3:
          this->ChipID.ProcessorName =  "Newer i80386 family";
          break;
        case 4:
          switch (this->ChipID.Model) {
            case 0: this->ChipID.ProcessorName = "i80486DX-25/33"; break;
            case 1: this->ChipID.ProcessorName = "i80486DX-50"; break;
            case 2: this->ChipID.ProcessorName = "i80486SX"; break;
            case 3: this->ChipID.ProcessorName = "i80486DX2"; break;
            case 4: this->ChipID.ProcessorName = "i80486SL"; break;
            case 5: this->ChipID.ProcessorName = "i80486SX2"; break;
            case 7: this->ChipID.ProcessorName = "i80486DX2 WriteBack"; break;
            case 8: this->ChipID.ProcessorName = "i80486DX4"; break;
            case 9: this->ChipID.ProcessorName = "i80486DX4 WriteBack"; break;
            default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false;
            }
          break;
        case 5:
          switch (this->ChipID.Model)
            {
            case 0: this->ChipID.ProcessorName = "P5 A-Step"; break;
            case 1: this->ChipID.ProcessorName = "P5"; break;
            case 2: this->ChipID.ProcessorName = "P54C"; break;
            case 3: this->ChipID.ProcessorName = "P24T OverDrive"; break;
            case 4: this->ChipID.ProcessorName = "P55C"; break;
            case 7: this->ChipID.ProcessorName = "P54C"; break;
            case 8: this->ChipID.ProcessorName = "P55C (0.25micron)"; break;
            default: this->ChipID.ProcessorName = "Unknown Pentium family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model)
            {
            case 0: this->ChipID.ProcessorName = "P6 A-Step"; break;
            case 1: this->ChipID.ProcessorName = "P6"; break;
            case 3: this->ChipID.ProcessorName = "Pentium II (0.28 micron)"; break;
            case 5: this->ChipID.ProcessorName = "Pentium II (0.25 micron)"; break;
            case 6: this->ChipID.ProcessorName = "Pentium II With On-Die L2 Cache"; break;
            case 7: this->ChipID.ProcessorName = "Pentium III (0.25 micron)"; break;
            case 8: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 256 KB On-Die L2 Cache "; break;
            case 0xa: this->ChipID.ProcessorName = "Pentium III (0.18 micron) With 1 Or 2 MB On-Die L2 Cache "; break;
            case 0xb: this->ChipID.ProcessorName = "Pentium III (0.13 micron) With 256 Or 512 KB On-Die L2 Cache "; break;
            case 23: this->ChipID.ProcessorName =  "Intel(R) Core(TM)2 Duo CPU     T9500  @ 2.60GHz"; break;
            default: this->ChipID.ProcessorName = "Unknown P6 family"; return false;
            }
          break;
        case 7:
          this->ChipID.ProcessorName = "Intel Merced (IA-64)";
          break;
        case 0xf:
          // Check the extended family bits...
          switch (this->ChipID.ExtendedFamily)
            {
            case 0:
              switch (this->ChipID.Model)
                {
                case 0: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break;
                case 1: this->ChipID.ProcessorName = "Pentium IV (0.18 micron)"; break;
                case 2: this->ChipID.ProcessorName = "Pentium IV (0.13 micron)"; break;
                default: this->ChipID.ProcessorName = "Unknown Pentium 4 family"; return false;
                }
              break;
            case 1:
              this->ChipID.ProcessorName = "Intel McKinley (IA-64)";
              break;
            default:
              this->ChipID.ProcessorName = "Pentium";
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Intel family";
          return false;
        }
      break;

    case AMD:
      // Check the family / model / revision to determine the CPU ID.
      switch (this->ChipID.Family)
        {
        case 4:
          switch (this->ChipID.Model)
            {
            case 3: this->ChipID.ProcessorName = "80486DX2"; break;
            case 7: this->ChipID.ProcessorName = "80486DX2 WriteBack"; break;
            case 8: this->ChipID.ProcessorName = "80486DX4"; break;
            case 9: this->ChipID.ProcessorName = "80486DX4 WriteBack"; break;
            case 0xe: this->ChipID.ProcessorName = "5x86"; break;
            case 0xf: this->ChipID.ProcessorName = "5x86WB"; break;
            default: this->ChipID.ProcessorName = "Unknown 80486 family"; return false;
            }
          break;
        case 5:
          switch (this->ChipID.Model)
            {
            case 0: this->ChipID.ProcessorName = "SSA5 (PR75, PR90 =  PR100)"; break;
            case 1: this->ChipID.ProcessorName = "5k86 (PR120 =  PR133)"; break;
            case 2: this->ChipID.ProcessorName = "5k86 (PR166)"; break;
            case 3: this->ChipID.ProcessorName = "5k86 (PR200)"; break;
            case 6: this->ChipID.ProcessorName = "K6 (0.30 micron)"; break;
            case 7: this->ChipID.ProcessorName = "K6 (0.25 micron)"; break;
            case 8: this->ChipID.ProcessorName = "K6-2"; break;
            case 9: this->ChipID.ProcessorName = "K6-III"; break;
            case 0xd: this->ChipID.ProcessorName = "K6-2+ or K6-III+ (0.18 micron)"; break;
            default: this->ChipID.ProcessorName = "Unknown 80586 family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model)
            {
            case 1: this->ChipID.ProcessorName = "Athlon- (0.25 micron)"; break;
            case 2: this->ChipID.ProcessorName = "Athlon- (0.18 micron)"; break;
            case 3: this->ChipID.ProcessorName = "Duron- (SF core)"; break;
            case 4: this->ChipID.ProcessorName = "Athlon- (Thunderbird core)"; break;
            case 6: this->ChipID.ProcessorName = "Athlon- (Palomino core)"; break;
            case 7: this->ChipID.ProcessorName = "Duron- (Morgan core)"; break;
            case 8:
              if (this->Features.ExtendedFeatures.SupportsMP)
                this->ChipID.ProcessorName = "Athlon - MP (Thoroughbred core)";
              else this->ChipID.ProcessorName = "Athlon - XP (Thoroughbred core)";
              break;
            default: this->ChipID.ProcessorName = "Unknown K7 family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown AMD family";
          return false;
        }
      break;

    case Transmeta:
      switch (this->ChipID.Family)
        {
        case 5:
          switch (this->ChipID.Model)
            {
            case 4: this->ChipID.ProcessorName = "Crusoe TM3x00 and TM5x00"; break;
            default: this->ChipID.ProcessorName = "Unknown Crusoe family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Transmeta family";
          return false;
        }
      break;

    case Rise:
      switch (this->ChipID.Family)
        {
        case 5:
          switch (this->ChipID.Model)
            {
            case 0: this->ChipID.ProcessorName = "mP6 (0.25 micron)"; break;
            case 2: this->ChipID.ProcessorName = "mP6 (0.18 micron)"; break;
            default: this->ChipID.ProcessorName = "Unknown Rise family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Rise family";
          return false;
        }
      break;

    case UMC:
      switch (this->ChipID.Family)
        {
        case 4:
          switch (this->ChipID.Model)
            {
            case 1: this->ChipID.ProcessorName = "U5D"; break;
            case 2: this->ChipID.ProcessorName = "U5S"; break;
            default: this->ChipID.ProcessorName = "Unknown UMC family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown UMC family";
          return false;
        }
      break;

    case IDT:
      switch (this->ChipID.Family)
        {
        case 5:
          switch (this->ChipID.Model)
            {
            case 4: this->ChipID.ProcessorName = "C6"; break;
            case 8: this->ChipID.ProcessorName = "C2"; break;
            case 9: this->ChipID.ProcessorName = "C3"; break;
            default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model)
            {
            case 6: this->ChipID.ProcessorName = "VIA Cyrix III - Samuel"; break;
            default: this->ChipID.ProcessorName = "Unknown IDT\\Centaur family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown IDT\\Centaur family";
          return false;
        }
      break;

    case Cyrix:
      switch (this->ChipID.Family)
        {
        case 4:
          switch (this->ChipID.Model)
            {
            case 4: this->ChipID.ProcessorName = "MediaGX GX =  GXm"; break;
            case 9: this->ChipID.ProcessorName = "5x86"; break;
            default: this->ChipID.ProcessorName = "Unknown Cx5x86 family"; return false;
            }
          break;
        case 5:
          switch (this->ChipID.Model)
            {
            case 2: this->ChipID.ProcessorName = "Cx6x86"; break;
            case 4: this->ChipID.ProcessorName = "MediaGX GXm"; break;
            default: this->ChipID.ProcessorName = "Unknown Cx6x86 family"; return false;
            }
          break;
        case 6:
          switch (this->ChipID.Model)
            {
            case 0: this->ChipID.ProcessorName = "6x86MX"; break;
            case 5: this->ChipID.ProcessorName = "Cyrix M2 Core"; break;
            case 6: this->ChipID.ProcessorName = "WinChip C5A Core"; break;
            case 7: this->ChipID.ProcessorName = "WinChip C5B\\C5C Core"; break;
            case 8: this->ChipID.ProcessorName = "WinChip C5C-T Core"; break;
            default: this->ChipID.ProcessorName = "Unknown 6x86MX\\Cyrix III family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown Cyrix family";
          return false;
        }
      break;

    case NexGen:
      switch (this->ChipID.Family)
        {
        case 5:
          switch (this->ChipID.Model)
            {
            case 0: this->ChipID.ProcessorName = "Nx586 or Nx586FPU"; break;
            default: this->ChipID.ProcessorName = "Unknown NexGen family"; return false;
            }
          break;
        default:
          this->ChipID.ProcessorName = "Unknown NexGen family";
          return false;
        }
      break;

    case NSC:
      this->ChipID.ProcessorName = "Cx486SLC \\ DLC \\ Cx486S A-Step";
      break;

    case Sun:
    case IBM:
    case Motorola:
    case HP:
    case UnknownManufacturer:
    default:
      this->ChipID.ProcessorName = "Unknown family"; // We cannot identify the processor.
      return false;
    }

  return true;
}


/** Extract a value from the CPUInfo file */
std::string SystemInformationImplementation::ExtractValueFromCpuInfoFile(std::string buffer,const char* word,size_t init)
{
  size_t pos = buffer.find(word,init);
  if(pos != buffer.npos)
    {
    this->CurrentPositionInFile = pos;
    pos = buffer.find(":",pos);
    size_t pos2 = buffer.find("\n",pos);
    if(pos!=buffer.npos && pos2!=buffer.npos)
      {
      // It may happen that the beginning matches, but this is still not the requested key.
      // An example is looking for "cpu" when "cpu family" comes first. So we check that
      // we have only spaces from here to pos, otherwise we search again.
      for(size_t i=this->CurrentPositionInFile+strlen(word); i < pos; ++i)
        {
        if(buffer[i] != ' ' && buffer[i] != '\t')
          {
          return this->ExtractValueFromCpuInfoFile(buffer, word, pos2);
          }
        }
      return buffer.substr(pos+2,pos2-pos-2);
      }
    }
  this->CurrentPositionInFile = buffer.npos;
  return "";
}

/** Query for the cpu status */
bool SystemInformationImplementation::RetreiveInformationFromCpuInfoFile()
{
  this->NumberOfLogicalCPU = 0;
  this->NumberOfPhysicalCPU = 0;
  std::string buffer;

  FILE *fd = fopen("/proc/cpuinfo", "r" );
  if ( !fd )
    {
    std::cout << "Problem opening /proc/cpuinfo" << std::endl;
    return false;
    }

  size_t fileSize = 0;
  while(!feof(fd))
    {
    buffer += static_cast<char>(fgetc(fd));
    fileSize++;
    }
  fclose( fd );
  buffer.resize(fileSize-2);
  // Number of logical CPUs (combination of multiple processors, multi-core
  // and hyperthreading)
  size_t pos = buffer.find("processor\t");
  while(pos != buffer.npos)
    {
    this->NumberOfLogicalCPU++;
    pos = buffer.find("processor\t",pos+1);
    }

#ifdef __linux
  // Find the largest physical id.
  int maxId = -1;
  std::string idc =
                       this->ExtractValueFromCpuInfoFile(buffer,"physical id");
  while(this->CurrentPositionInFile != buffer.npos)
    {
      int id = atoi(idc.c_str());
      if(id > maxId)
      {
       maxId=id;
      }
    idc = this->ExtractValueFromCpuInfoFile(buffer,"physical id",
                                            this->CurrentPositionInFile+1);
    }
  // Physical ids returned by Linux don't distinguish cores.
  // We want to record the total number of cores in this->NumberOfPhysicalCPU
  // (checking only the first proc)
  std::string cores =
                        this->ExtractValueFromCpuInfoFile(buffer,"cpu cores");
  int numberOfCoresPerCPU=atoi(cores.c_str());
  if (maxId > 0)
    {
    this->NumberOfPhysicalCPU=static_cast<unsigned int>(
      numberOfCoresPerCPU*(maxId+1));
    }
  else
    {
    // Linux Sparc: get cpu count
    this->NumberOfPhysicalCPU=
            atoi(this->ExtractValueFromCpuInfoFile(buffer,"ncpus active").c_str());
    }

#else // __CYGWIN__
  // does not have "physical id" entries, neither "cpu cores"
  // this has to be fixed for hyper-threading.
  std::string cpucount =
    this->ExtractValueFromCpuInfoFile(buffer,"cpu count");
  this->NumberOfPhysicalCPU=
    this->NumberOfLogicalCPU = atoi(cpucount.c_str());
#endif
  // gotta have one, and if this is 0 then we get a / by 0n
  // better to have a bad answer than a crash
  if(this->NumberOfPhysicalCPU <= 0)
    {
    this->NumberOfPhysicalCPU = 1;
    }
  // LogicalProcessorsPerPhysical>1 => hyperthreading.
  this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical=
      this->NumberOfLogicalCPU/this->NumberOfPhysicalCPU;

  // CPU speed (checking only the first processor)
  std::string CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"cpu MHz");
  if(!CPUSpeed.empty())
    {
    this->CPUSpeedInMHz = static_cast<float>(atof(CPUSpeed.c_str()));
    }
#ifdef __linux
  else
    {
    // Linux Sparc: CPU speed is in Hz and encoded in hexadecimal
    CPUSpeed = this->ExtractValueFromCpuInfoFile(buffer,"Cpu0ClkTck");
    this->CPUSpeedInMHz = static_cast<float>(
                                 strtoull(CPUSpeed.c_str(),0,16))/1000000.0f;
    }
#endif

  // Chip family
  std::string familyStr =
    this->ExtractValueFromCpuInfoFile(buffer,"cpu family");
  if(familyStr.empty())
    {
    familyStr = this->ExtractValueFromCpuInfoFile(buffer,"CPU architecture");
    }
  this->ChipID.Family = atoi(familyStr.c_str());

  // Chip Vendor
  this->ChipID.Vendor = this->ExtractValueFromCpuInfoFile(buffer,"vendor_id");
  this->FindManufacturer(familyStr);

  // second try for setting family
  if (this->ChipID.Family == 0 && this->ChipManufacturer == HP)
    {
    if (familyStr == "PA-RISC 1.1a")
      this->ChipID.Family = 0x11a;
    else if (familyStr == "PA-RISC 2.0")
      this->ChipID.Family = 0x200;
    // If you really get CMake to work on a machine not belonging to
    // any of those families I owe you a dinner if you get it to
    // contribute nightly builds regularly.
    }

  // Chip Model
  this->ChipID.Model = atoi(this->ExtractValueFromCpuInfoFile(buffer,"model").c_str());
  if(!this->RetrieveClassicalCPUIdentity())
    {
    // Some platforms (e.g. PA-RISC) tell us their CPU name here.
    // Note: x86 does not.
    std::string cpuname = this->ExtractValueFromCpuInfoFile(buffer,"cpu");
    if(!cpuname.empty())
      {
      this->ChipID.ProcessorName = cpuname;
      }
    }

  // Chip revision
  std::string cpurev = this->ExtractValueFromCpuInfoFile(buffer,"stepping");
  if(cpurev.empty())
    {
    cpurev = this->ExtractValueFromCpuInfoFile(buffer,"CPU revision");
    }
  this->ChipID.Revision = atoi(cpurev.c_str());

  // Chip Model Name
  this->ChipID.ModelName = this->ExtractValueFromCpuInfoFile(buffer,"model name").c_str();

  // L1 Cache size
  // Different architectures may show different names for the caches.
  // Sum up everything we find.
  std::vector<const char*> cachename;
  cachename.clear();

  cachename.push_back("cache size"); // e.g. x86
  cachename.push_back("I-cache"); // e.g. PA-RISC
  cachename.push_back("D-cache"); // e.g. PA-RISC

  this->Features.L1CacheSize = 0;
  for (size_t index = 0; index < cachename.size(); index ++)
    {
    std::string cacheSize = this->ExtractValueFromCpuInfoFile(buffer,cachename[index]);
    if (!cacheSize.empty())
      {
      pos = cacheSize.find(" KB");
      if(pos!=cacheSize.npos)
        {
        cacheSize = cacheSize.substr(0,pos);
        }
      this->Features.L1CacheSize += atoi(cacheSize.c_str());
      }
    }

  // processor feature flags (probably x86 specific)
  std::string cpuflags = this->ExtractValueFromCpuInfoFile(buffer,"flags");
  if(!cpurev.empty())
    {
    // now we can match every flags as space + flag + space
    cpuflags = " " + cpuflags + " ";
    if ((cpuflags.find(" fpu ")!=std::string::npos))
      {
      this->Features.HasFPU = true;
      }
    if ((cpuflags.find(" tsc ")!=std::string::npos))
      {
      this->Features.HasTSC = true;
      }
    if ((cpuflags.find(" mmx ")!=std::string::npos))
      {
      this->Features.HasMMX = true;
      }
    if ((cpuflags.find(" sse ")!=std::string::npos))
      {
      this->Features.HasSSE = true;
      }
    if ((cpuflags.find(" sse2 ")!=std::string::npos))
      {
      this->Features.HasSSE2 = true;
      }
    if ((cpuflags.find(" apic ")!=std::string::npos))
      {
      this->Features.HasAPIC = true;
      }
    if ((cpuflags.find(" cmov ")!=std::string::npos))
      {
      this->Features.HasCMOV = true;
      }
    if ((cpuflags.find(" mtrr ")!=std::string::npos))
      {
      this->Features.HasMTRR = true;
      }
    if ((cpuflags.find(" acpi ")!=std::string::npos))
      {
      this->Features.HasACPI = true;
      }
    if ((cpuflags.find(" 3dnow ")!=std::string::npos))
      {
      this->Features.ExtendedFeatures.Has3DNow = true;
      }
    }

  return true;
}

bool SystemInformationImplementation::QueryProcessorBySysconf()
{
#if defined(_SC_NPROC_ONLN) && !defined(_SC_NPROCESSORS_ONLN)
// IRIX names this slightly different
# define _SC_NPROCESSORS_ONLN _SC_NPROC_ONLN
#endif

#ifdef _SC_NPROCESSORS_ONLN
  long c = sysconf(_SC_NPROCESSORS_ONLN);
  if (c <= 0)
    {
    return false;
    }

  this->NumberOfPhysicalCPU = static_cast<unsigned int>(c);
  this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;

  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryProcessor()
{
  return this->QueryProcessorBySysconf();
}

/**
Get total system RAM in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryTotal()
{
#if defined(_WIN32)
# if defined(_MSC_VER) && _MSC_VER < 1300
  MEMORYSTATUS stat;
  stat.dwLength = sizeof(stat);
  GlobalMemoryStatus(&stat);
  return stat.dwTotalPhys/1024;
# else
  MEMORYSTATUSEX statex;
  statex.dwLength=sizeof(statex);
  GlobalMemoryStatusEx(&statex);
  return statex.ullTotalPhys/1024;
# endif
#elif defined(__linux)
  SystemInformation::LongLong memTotal=0;
  int ierr=GetFieldFromFile("/proc/meminfo","MemTotal:",memTotal);
  if (ierr)
    {
    return -1;
    }
  return memTotal;
#elif defined(__APPLE__)
  uint64_t mem;
  size_t len = sizeof(mem);
  int ierr=sysctlbyname("hw.memsize", &mem, &len, NULL, 0);
  if (ierr)
    {
    return -1;
    }
  return mem/1024;
#else
  return 0;
#endif
}

/**
Get total system RAM in units of KiB. This may differ from the
host total if a host-wide resource limit is applied.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryAvailable(const char *hostLimitEnvVarName)
{
  SystemInformation::LongLong memTotal=this->GetHostMemoryTotal();

  // the following mechanism is provided for systems that
  // apply resource limits across groups of processes.
  // this is of use on certain SMP systems (eg. SGI UV)
  // where the host has a large amount of ram but a given user's
  // access to it is severly restricted. The system will
  // apply a limit across a set of processes. Units are in KiB.
  if (hostLimitEnvVarName)
    {
    const char *hostLimitEnvVarValue=getenv(hostLimitEnvVarName);
    if (hostLimitEnvVarValue)
      {
      SystemInformation::LongLong hostLimit=atoLongLong(hostLimitEnvVarValue);
      if (hostLimit>0)
        {
        memTotal=min(hostLimit,memTotal);
        }
      }
    }

  return memTotal;
}

/**
Get total system RAM in units of KiB. This may differ from the
host total if a per-process resource limit is applied.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcMemoryAvailable(
        const char *hostLimitEnvVarName,
        const char *procLimitEnvVarName)
{
  SystemInformation::LongLong memAvail
    = this->GetHostMemoryAvailable(hostLimitEnvVarName);

  // the following mechanism is provide for systems where rlimits
  // are not employed. Units are in KiB.
  if (procLimitEnvVarName)
    {
    const char *procLimitEnvVarValue=getenv(procLimitEnvVarName);
    if (procLimitEnvVarValue)
      {
      SystemInformation::LongLong procLimit=atoLongLong(procLimitEnvVarValue);
      if (procLimit>0)
        {
        memAvail=min(procLimit,memAvail);
        }
      }
    }

#if defined(__linux)
  int ierr;
  ResourceLimitType rlim;
  ierr=GetResourceLimit(RLIMIT_DATA,&rlim);
  if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
    {
    memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
    }

  ierr=GetResourceLimit(RLIMIT_AS,&rlim);
  if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
    {
    memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
    }
#elif defined(__APPLE__)
  struct rlimit rlim;
  int ierr;
  ierr=getrlimit(RLIMIT_DATA,&rlim);
  if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
    {
    memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
    }

  ierr=getrlimit(RLIMIT_RSS,&rlim);
  if ((ierr==0) && (rlim.rlim_cur != RLIM_INFINITY))
    {
    memAvail=min((SystemInformation::LongLong)rlim.rlim_cur/1024,memAvail);
    }
#endif

  return memAvail;
}

/**
Get RAM used by all processes in the host, in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetHostMemoryUsed()
{
#if defined(_WIN32)
# if defined(_MSC_VER) && _MSC_VER < 1300
  MEMORYSTATUS stat;
  stat.dwLength = sizeof(stat);
  GlobalMemoryStatus(&stat);
  return (stat.dwTotalPhys - stat.dwAvailPhys)/1024;
# else
  MEMORYSTATUSEX statex;
  statex.dwLength=sizeof(statex);
  GlobalMemoryStatusEx(&statex);
  return (statex.ullTotalPhys - statex.ullAvailPhys)/1024;
# endif
#elif defined(__linux)
  // First try to use MemAvailable, but it only works on newer kernels
  const char *names2[3]={"MemTotal:","MemAvailable:",NULL};
  SystemInformation::LongLong values2[2]={SystemInformation::LongLong(0)};
  int ierr=GetFieldsFromFile("/proc/meminfo",names2,values2);
  if (ierr)
    {
    const char *names4[5]={"MemTotal:","MemFree:","Buffers:","Cached:",NULL};
    SystemInformation::LongLong values4[4]={SystemInformation::LongLong(0)};
    ierr=GetFieldsFromFile("/proc/meminfo",names4,values4);
    if(ierr)
      {
      return ierr;
      }
    SystemInformation::LongLong &memTotal=values4[0];
    SystemInformation::LongLong &memFree=values4[1];
    SystemInformation::LongLong &memBuffers=values4[2];
    SystemInformation::LongLong &memCached=values4[3];
    return memTotal - memFree - memBuffers - memCached;
    }
  SystemInformation::LongLong &memTotal=values2[0];
  SystemInformation::LongLong &memAvail=values2[1];
  return memTotal - memAvail;
#elif defined(__APPLE__)
  SystemInformation::LongLong psz=getpagesize();
  if (psz<1)
    {
    return -1;
    }
  const char *names[3]={"Pages wired down:","Pages active:",NULL};
  SystemInformation::LongLong values[2]={SystemInformation::LongLong(0)};
  int ierr=GetFieldsFromCommand("vm_stat", names, values);
  if (ierr)
    {
    return -1;
    }
  SystemInformation::LongLong &vmWired=values[0];
  SystemInformation::LongLong &vmActive=values[1];
  return ((vmActive+vmWired)*psz)/1024;
#else
  return 0;
#endif
}

/**
Get system RAM used by the process associated with the given
process id in units of KiB.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcMemoryUsed()
{
#if defined(_WIN32) && defined(KWSYS_SYS_HAS_PSAPI)
  long pid=GetCurrentProcessId();
  HANDLE hProc;
  hProc=OpenProcess(
      PROCESS_QUERY_INFORMATION|PROCESS_VM_READ,
      false,
      pid);
  if (hProc==0)
    {
    return -1;
    }
  PROCESS_MEMORY_COUNTERS pmc;
  int ok=GetProcessMemoryInfo(hProc,&pmc,sizeof(pmc));
  CloseHandle(hProc);
  if (!ok)
    {
    return -2;
    }
  return pmc.WorkingSetSize/1024;
#elif defined(__linux)
  SystemInformation::LongLong memUsed=0;
  int ierr=GetFieldFromFile("/proc/self/status","VmRSS:",memUsed);
  if (ierr)
    {
    return -1;
    }
  return memUsed;
#elif defined(__APPLE__)
  SystemInformation::LongLong memUsed=0;
  pid_t pid=getpid();
  std::ostringstream oss;
  oss << "ps -o rss= -p " << pid;
  FILE *file=popen(oss.str().c_str(),"r");
  if (file==0)
    {
    return -1;
    }
  oss.str("");
  while (!feof(file) && !ferror(file))
    {
    char buf[256]={'\0'};
    errno=0;
    size_t nRead=fread(buf,1,256,file);
    if (ferror(file) && (errno==EINTR))
      {
      clearerr(file);
      }
    if (nRead) oss << buf;
    }
  int ierr=ferror(file);
  pclose(file);
  if (ierr)
    {
    return -2;
    }
  std::istringstream iss(oss.str());
  iss >> memUsed;
  return memUsed;
#else
  return 0;
#endif
}

double SystemInformationImplementation::GetLoadAverage()
{
#if defined(KWSYS_CXX_HAS_GETLOADAVG)
  double loadavg[3] = { 0.0, 0.0, 0.0 };
  if (getloadavg(loadavg, 3) > 0)
    {
    return loadavg[0];
    }
  return -0.0;
#elif defined(KWSYS_SYSTEMINFORMATION_USE_GetSystemTimes)
  // Old windows.h headers do not provide GetSystemTimes.
  typedef BOOL (WINAPI *GetSystemTimesType)(LPFILETIME, LPFILETIME,
                                            LPFILETIME);
  static GetSystemTimesType pGetSystemTimes =
    (GetSystemTimesType)GetProcAddress(GetModuleHandleW(L"kernel32"),
                                       "GetSystemTimes");
  FILETIME idleTime, kernelTime, userTime;
  if (pGetSystemTimes && pGetSystemTimes(&idleTime, &kernelTime, &userTime))
    {
    unsigned __int64 const idleTicks =
      fileTimeToUInt64(idleTime);
    unsigned __int64 const totalTicks =
      fileTimeToUInt64(kernelTime) + fileTimeToUInt64(userTime);
    return calculateCPULoad(idleTicks, totalTicks) * GetNumberOfPhysicalCPU();
    }
  return -0.0;
#else
  // Not implemented on this platform.
  return -0.0;
#endif
}

/**
Get the process id of the running process.
*/
SystemInformation::LongLong
SystemInformationImplementation::GetProcessId()
{
#if defined(_WIN32)
  return GetCurrentProcessId();
#elif defined(__linux) || defined(__APPLE__)
  return getpid();
#else
  return -1;
#endif
}

/**
return current program stack in a string
demangle cxx symbols if possible.
*/
std::string SystemInformationImplementation::GetProgramStack(
      int firstFrame,
      int wholePath)
{
  std::string programStack = ""
#if !defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
    "WARNING: The stack could not be examined "
    "because backtrace is not supported.\n"
#elif !defined(KWSYS_SYSTEMINFORMATION_HAS_DEBUG_BUILD)
    "WARNING: The stack trace will not use advanced "
    "capabilities because this is a release build.\n"
#else
# if !defined(KWSYS_SYSTEMINFORMATION_HAS_SYMBOL_LOOKUP)
    "WARNING: Function names will not be demangled because "
    "dladdr is not available.\n"
# endif
# if !defined(KWSYS_SYSTEMINFORMATION_HAS_CPP_DEMANGLE)
    "WARNING: Function names will not be demangled "
    "because cxxabi is not available.\n"
# endif
#endif
    ;

  std::ostringstream oss;
#if defined(KWSYS_SYSTEMINFORMATION_HAS_BACKTRACE)
  void *stackSymbols[256];
  int nFrames=backtrace(stackSymbols,256);
  for (int i=firstFrame; i<nFrames; ++i)
    {
    SymbolProperties symProps;
    symProps.SetReportPath(wholePath);
    symProps.Initialize(stackSymbols[i]);
    oss << symProps << std::endl;
    }
#else
  (void)firstFrame;
  (void)wholePath;
#endif
  programStack += oss.str();

  return programStack;
}


/**
when set print stack trace in response to common signals.
*/
void SystemInformationImplementation::SetStackTraceOnError(int enable)
{
#if !defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
  static int saOrigValid=0;
  static struct sigaction saABRTOrig;
  static struct sigaction saSEGVOrig;
  static struct sigaction saTERMOrig;
  static struct sigaction saINTOrig;
  static struct sigaction saILLOrig;
  static struct sigaction saBUSOrig;
  static struct sigaction saFPEOrig;


  if (enable && !saOrigValid)
    {
    // save the current actions
    sigaction(SIGABRT,0,&saABRTOrig);
    sigaction(SIGSEGV,0,&saSEGVOrig);
    sigaction(SIGTERM,0,&saTERMOrig);
    sigaction(SIGINT,0,&saINTOrig);
    sigaction(SIGILL,0,&saILLOrig);
    sigaction(SIGBUS,0,&saBUSOrig);
    sigaction(SIGFPE,0,&saFPEOrig);

    // enable read, disable write
    saOrigValid=1;

    // install ours
    struct sigaction sa;
    sa.sa_sigaction=(SigAction)StacktraceSignalHandler;
    sa.sa_flags=SA_SIGINFO|SA_RESETHAND;
# ifdef SA_RESTART
    sa.sa_flags|=SA_RESTART;
# endif
    sigemptyset(&sa.sa_mask);

    sigaction(SIGABRT,&sa,0);
    sigaction(SIGSEGV,&sa,0);
    sigaction(SIGTERM,&sa,0);
    sigaction(SIGINT,&sa,0);
    sigaction(SIGILL,&sa,0);
    sigaction(SIGBUS,&sa,0);
    sigaction(SIGFPE,&sa,0);
    }
  else
  if (!enable && saOrigValid)
    {
    // restore previous actions
    sigaction(SIGABRT,&saABRTOrig,0);
    sigaction(SIGSEGV,&saSEGVOrig,0);
    sigaction(SIGTERM,&saTERMOrig,0);
    sigaction(SIGINT,&saINTOrig,0);
    sigaction(SIGILL,&saILLOrig,0);
    sigaction(SIGBUS,&saBUSOrig,0);
    sigaction(SIGFPE,&saFPEOrig,0);

    // enable write, disable read
    saOrigValid=0;
    }
#else
  // avoid warning C4100
  (void)enable;
#endif
}

bool SystemInformationImplementation::QueryWindowsMemory()
{
#if defined(_WIN32)
# if defined(_MSC_VER) && _MSC_VER < 1300
  MEMORYSTATUS ms;
  unsigned long tv, tp, av, ap;
  ms.dwLength = sizeof(ms);
  GlobalMemoryStatus(&ms);
#  define MEM_VAL(value) dw##value
# else
  MEMORYSTATUSEX ms;
  DWORDLONG tv, tp, av, ap;
  ms.dwLength = sizeof(ms);
  if (0 == GlobalMemoryStatusEx(&ms))
  {
    return 0;
  }
#  define MEM_VAL(value) ull##value
# endif
  tv = ms.MEM_VAL(TotalPageFile);
  tp = ms.MEM_VAL(TotalPhys);
  av = ms.MEM_VAL(AvailPageFile);
  ap = ms.MEM_VAL(AvailPhys);
  this->TotalVirtualMemory = tv>>10>>10;
  this->TotalPhysicalMemory = tp>>10>>10;
  this->AvailableVirtualMemory = av>>10>>10;
  this->AvailablePhysicalMemory = ap>>10>>10;
  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryLinuxMemory()
{
#if defined(__linux)
  unsigned long tv=0;
  unsigned long tp=0;
  unsigned long av=0;
  unsigned long ap=0;

  char buffer[1024]; // for reading lines

  int linuxMajor = 0;
  int linuxMinor = 0;

  // Find the Linux kernel version first
  struct utsname unameInfo;
  int errorFlag = uname(&unameInfo);
  if( errorFlag!=0 )
    {
    std::cout << "Problem calling uname(): " << strerror(errno) << std::endl;
    return false;
    }

  if( strlen(unameInfo.release)>=3 )
    {
    // release looks like "2.6.3-15mdk-i686-up-4GB"
    char majorChar=unameInfo.release[0];
    char minorChar=unameInfo.release[2];

    if( isdigit(majorChar) )
      {
      linuxMajor=majorChar-'0';
      }

    if( isdigit(minorChar) )
      {
      linuxMinor=minorChar-'0';
      }
    }

  FILE *fd = fopen("/proc/meminfo", "r" );
  if ( !fd )
    {
    std::cout << "Problem opening /proc/meminfo" << std::endl;
    return false;
    }

  if( linuxMajor>=3 || ( (linuxMajor>=2) && (linuxMinor>=6) ) )
    {
    // new /proc/meminfo format since kernel 2.6.x
    // Rigorously, this test should check from the developping version 2.5.x
    // that introduced the new format...

    enum { mMemTotal, mMemFree, mBuffers, mCached, mSwapTotal, mSwapFree };
    const char* format[6] =
      { "MemTotal:%lu kB", "MemFree:%lu kB", "Buffers:%lu kB",
        "Cached:%lu kB", "SwapTotal:%lu kB", "SwapFree:%lu kB" };
    bool have[6] = { false, false, false, false, false, false };
    unsigned long value[6];
    int count = 0;
    while(fgets(buffer, static_cast<int>(sizeof(buffer)), fd))
      {
      for(int i=0; i < 6; ++i)
        {
        if(!have[i] && sscanf(buffer, format[i], &value[i]) == 1)
          {
          have[i] = true;
          ++count;
          }
        }
      }
    if(count == 6)
      {
      this->TotalPhysicalMemory = value[mMemTotal] / 1024;
      this->AvailablePhysicalMemory =
        (value[mMemFree] + value[mBuffers] + value[mCached]) / 1024;
      this->TotalVirtualMemory = value[mSwapTotal] / 1024;
      this->AvailableVirtualMemory = value[mSwapFree] / 1024;
      }
    else
      {
      std::cout << "Problem parsing /proc/meminfo" << std::endl;
      fclose(fd);
      return false;
      }
    }
  else
    {
    // /proc/meminfo format for kernel older than 2.6.x

    unsigned long temp;
    unsigned long cachedMem;
    unsigned long buffersMem;
    // Skip "total: used:..."
    char *r=fgets(buffer, static_cast<int>(sizeof(buffer)), fd);
    int status=0;
    if(r==buffer)
      {
      status+=fscanf(fd, "Mem: %lu %lu %lu %lu %lu %lu\n",
                     &tp, &temp, &ap, &temp, &buffersMem, &cachedMem);
      }
    if(status==6)
      {
      status+=fscanf(fd, "Swap: %lu %lu %lu\n", &tv, &temp, &av);
      }
    if(status==9)
      {
      this->TotalVirtualMemory = tv>>10>>10;
      this->TotalPhysicalMemory = tp>>10>>10;
      this->AvailableVirtualMemory = av>>10>>10;
      this->AvailablePhysicalMemory = (ap+buffersMem+cachedMem)>>10>>10;
      }
    else
      {
      std::cout << "Problem parsing /proc/meminfo" << std::endl;
      fclose(fd);
      return false;
      }
    }
  fclose( fd );

  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryCygwinMemory()
{
#ifdef __CYGWIN__
  // _SC_PAGE_SIZE does return the mmap() granularity on Cygwin,
  // see http://cygwin.com/ml/cygwin/2006-06/msg00350.html
  // Therefore just use 4096 as the page size of Windows.
  long m = sysconf(_SC_PHYS_PAGES);
  if (m < 0)
    {
    return false;
    }
  this->TotalPhysicalMemory = m >> 8;
  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryAIXMemory()
{
#if defined(_AIX) && defined(_SC_AIX_REALMEM)
  long c = sysconf(_SC_AIX_REALMEM);
  if (c <= 0)
    {
    return false;
    }

  this->TotalPhysicalMemory = c / 1024;

  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryMemoryBySysconf()
{
#if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE)
  // Assume the mmap() granularity as returned by _SC_PAGESIZE is also
  // the system page size. The only known system where this isn't true
  // is Cygwin.
  long p = sysconf(_SC_PHYS_PAGES);
  long m = sysconf(_SC_PAGESIZE);

  if (p < 0 || m < 0)
    {
    return false;
    }

  // assume pagesize is a power of 2 and smaller 1 MiB
  size_t pagediv = (1024 * 1024 / m);

  this->TotalPhysicalMemory = p;
  this->TotalPhysicalMemory /= pagediv;

#if defined(_SC_AVPHYS_PAGES)
  p = sysconf(_SC_AVPHYS_PAGES);
  if (p < 0)
    {
    return false;
    }

  this->AvailablePhysicalMemory = p;
  this->AvailablePhysicalMemory /= pagediv;
#endif

  return true;
#else
  return false;
#endif
}

/** Query for the memory status */
bool SystemInformationImplementation::QueryMemory()
{
  return this->QueryMemoryBySysconf();
}

/** */
size_t SystemInformationImplementation::GetTotalVirtualMemory()
{
  return this->TotalVirtualMemory;
}

/** */
size_t SystemInformationImplementation::GetAvailableVirtualMemory()
{
  return this->AvailableVirtualMemory;
}

size_t SystemInformationImplementation::GetTotalPhysicalMemory()
{
  return this->TotalPhysicalMemory;
}

/** */
size_t SystemInformationImplementation::GetAvailablePhysicalMemory()
{
  return this->AvailablePhysicalMemory;
}

/** Get Cycle differences */
SystemInformation::LongLong
SystemInformationImplementation::GetCyclesDifference (DELAY_FUNC DelayFunction,
                                                  unsigned int uiParameter)
{
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
  unsigned __int64 stamp1, stamp2;

  stamp1 = __rdtsc();
  DelayFunction(uiParameter);
  stamp2 = __rdtsc();

  return stamp2 - stamp1;
#elif USE_ASM_INSTRUCTIONS

  unsigned int edx1, eax1;
  unsigned int edx2, eax2;

  // Calculate the frequency of the CPU instructions.
  __try {
    _asm {
      push uiParameter ; push parameter param
      mov ebx, DelayFunction ; store func in ebx

      RDTSC_INSTRUCTION

      mov esi, eax ; esi = eax
      mov edi, edx ; edi = edx

      call ebx ; call the delay functions

      RDTSC_INSTRUCTION

      pop ebx

      mov edx2, edx      ; edx2 = edx
      mov eax2, eax      ; eax2 = eax

      mov edx1, edi      ; edx2 = edi
      mov eax1, esi      ; eax2 = esi
    }
  }
  __except(1)
    {
    return -1;
    }

  return ((((__int64) edx2 << 32) + eax2) - (((__int64) edx1 << 32) + eax1));

#else
  (void)DelayFunction;
  (void)uiParameter;
  return -1;
#endif
}


/** Compute the delay overhead */
void SystemInformationImplementation::DelayOverhead(unsigned int uiMS)
{
#if defined(_WIN32)
  LARGE_INTEGER Frequency, StartCounter, EndCounter;
  __int64 x;

  // Get the frequency of the high performance counter.
  if(!QueryPerformanceFrequency (&Frequency))
    {
    return;
    }
  x = Frequency.QuadPart / 1000 * uiMS;

  // Get the starting position of the counter.
  QueryPerformanceCounter (&StartCounter);

  do {
    // Get the ending position of the counter.
    QueryPerformanceCounter (&EndCounter);
  } while (EndCounter.QuadPart - StartCounter.QuadPart == x);
#endif
  (void)uiMS;
}

/** Return the number of logical CPU per physical CPUs Works only for windows */
unsigned char SystemInformationImplementation::LogicalCPUPerPhysicalCPU(void)
{
#ifdef __APPLE__
  size_t len = 4;
  int cores_per_package = 0;
  int err = sysctlbyname("machdep.cpu.cores_per_package", &cores_per_package, &len, NULL, 0);
  if (err != 0)
    {
      return 1; // That name was not found, default to 1
    }
  return static_cast<unsigned char>(cores_per_package);
#else
  int Regs[4] = { 0, 0, 0, 0 };
#if USE_CPUID
  if (!this->IsHyperThreadingSupported())
    {
    return static_cast<unsigned char>(1);  // HT not supported
    }
  call_cpuid(1, Regs);
#endif
  return static_cast<unsigned char> ((Regs[1] & NUM_LOGICAL_BITS) >> 16);
#endif
}


/** Works only for windows */
bool SystemInformationImplementation::IsHyperThreadingSupported()
{
  if (this->Features.ExtendedFeatures.SupportsHyperthreading)
    {
    return true;
    }

#if USE_CPUID
  int Regs[4] = { 0, 0, 0, 0 },
             VendorId[4] = { 0, 0, 0, 0 };
  // Get vendor id string
  if (!call_cpuid(0, VendorId))
    {
    return false;
    }
  // eax contains family processor type
  // edx has info about the availability of hyper-Threading
  if (!call_cpuid(1, Regs))
    {
    return false;
    }

  if (((Regs[0] & FAMILY_ID) == PENTIUM4_ID) || (Regs[0] & EXT_FAMILY_ID))
    {
    if (VendorId[1] == 0x756e6547) // 'uneG'
      {
      if (VendorId[3] == 0x49656e69) // 'Ieni'
        {
        if (VendorId[2] == 0x6c65746e) // 'letn'
          {
          // Genuine Intel with hyper-Threading technology
          this->Features.ExtendedFeatures.SupportsHyperthreading = ((Regs[3] & HT_BIT) != 0);
          return this->Features.ExtendedFeatures.SupportsHyperthreading;
          }
        }
      }
    }
#endif

  return 0;    // Not genuine Intel processor
}


/** Return the APIC Id. Works only for windows. */
unsigned char SystemInformationImplementation::GetAPICId()
{
  int Regs[4] = { 0, 0, 0, 0 };

#if USE_CPUID
  if (!this->IsHyperThreadingSupported())
    {
    return static_cast<unsigned char>(-1);  // HT not supported
    } // Logical processor = 1
  call_cpuid(1, Regs);
#endif

  return static_cast<unsigned char>((Regs[1] & INITIAL_APIC_ID_BITS) >> 24);
}


/** Count the number of CPUs. Works only on windows. */
int SystemInformationImplementation::CPUCount()
{
#if defined(_WIN32)
  unsigned char StatusFlag  = 0;
  SYSTEM_INFO info;

  this->NumberOfPhysicalCPU = 0;
  this->NumberOfLogicalCPU = 0;
  info.dwNumberOfProcessors = 0;
  GetSystemInfo (&info);

  // Number of physical processors in a non-Intel system
  // or in a 32-bit Intel system with Hyper-Threading technology disabled
  this->NumberOfPhysicalCPU = (unsigned char) info.dwNumberOfProcessors;

  if (this->IsHyperThreadingSupported())
    {
    unsigned char HT_Enabled = 0;
    this->NumberOfLogicalCPU = this->LogicalCPUPerPhysicalCPU();
    if (this->NumberOfLogicalCPU >= 1)    // >1 Doesn't mean HT is enabled in the BIOS
      {
      HANDLE hCurrentProcessHandle;
#ifndef _WIN64
# define DWORD_PTR DWORD
#endif
      DWORD_PTR  dwProcessAffinity;
      DWORD_PTR  dwSystemAffinity;
      DWORD  dwAffinityMask;

      // Calculate the appropriate  shifts and mask based on the
      // number of logical processors.
      unsigned int i = 1;
      unsigned char PHY_ID_MASK  = 0xFF;
      //unsigned char PHY_ID_SHIFT = 0;

      while (i < this->NumberOfLogicalCPU)
        {
        i *= 2;
         PHY_ID_MASK  <<= 1;
         // PHY_ID_SHIFT++;
        }

      hCurrentProcessHandle = GetCurrentProcess();
      GetProcessAffinityMask(hCurrentProcessHandle, &dwProcessAffinity,
                                                  &dwSystemAffinity);

      // Check if available process affinity mask is equal to the
      // available system affinity mask
      if (dwProcessAffinity != dwSystemAffinity)
        {
        StatusFlag = HT_CANNOT_DETECT;
        this->NumberOfPhysicalCPU = (unsigned char)-1;
        return StatusFlag;
        }

      dwAffinityMask = 1;
      while (dwAffinityMask != 0 && dwAffinityMask <= dwProcessAffinity)
        {
        // Check if this CPU is available
        if (dwAffinityMask & dwProcessAffinity)
          {
          if (SetProcessAffinityMask(hCurrentProcessHandle,
                                     dwAffinityMask))
            {
            unsigned char APIC_ID, LOG_ID;
            Sleep(0); // Give OS time to switch CPU

            APIC_ID = GetAPICId();
            LOG_ID  = APIC_ID & ~PHY_ID_MASK;

            if (LOG_ID != 0)
              {
              HT_Enabled = 1;
              }
            }
          }
        dwAffinityMask = dwAffinityMask << 1;
        }
      // Reset the processor affinity
      SetProcessAffinityMask(hCurrentProcessHandle, dwProcessAffinity);

      if (this->NumberOfLogicalCPU == 1)  // Normal P4 : HT is disabled in hardware
        {
        StatusFlag = HT_DISABLED;
        }
      else
        {
        if (HT_Enabled)
          {
          // Total physical processors in a Hyper-Threading enabled system.
          this->NumberOfPhysicalCPU /= (this->NumberOfLogicalCPU);
          StatusFlag = HT_ENABLED;
          }
        else
          {
          StatusFlag = HT_SUPPORTED_NOT_ENABLED;
          }
        }
      }
    }
  else
    {
    // Processors do not have Hyper-Threading technology
    StatusFlag = HT_NOT_CAPABLE;
    this->NumberOfLogicalCPU = 1;
    }
  return StatusFlag;
#else
  return 0;
#endif
}


/** Return the number of logical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfLogicalCPU()
{
  return this->NumberOfLogicalCPU;
}


/** Return the number of physical CPUs on the system */
unsigned int SystemInformationImplementation::GetNumberOfPhysicalCPU()
{
  return this->NumberOfPhysicalCPU;
}


/** For Mac use sysctlbyname calls to find system info */
bool SystemInformationImplementation::ParseSysCtl()
{
#if defined(__APPLE__)
  char retBuf[128];
  int err = 0;
  uint64_t value = 0;
  size_t len = sizeof(value);
  sysctlbyname("hw.memsize", &value, &len, NULL, 0);
  this->TotalPhysicalMemory = static_cast< size_t >( value/1048576 );

  // Parse values for Mac
  this->AvailablePhysicalMemory = 0;
  vm_statistics_data_t  vmstat;
  mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
  if ( host_statistics(mach_host_self(), HOST_VM_INFO,
                       (host_info_t) &vmstat, &count) == KERN_SUCCESS )
    {
    len = sizeof(value);
    err = sysctlbyname("hw.pagesize", &value, &len, NULL, 0);
    int64_t available_memory = vmstat.free_count * value;
    this->AvailablePhysicalMemory = static_cast< size_t >( available_memory / 1048576 );
    }

#ifdef VM_SWAPUSAGE
  // Virtual memory.
  int mib[2] = { CTL_VM, VM_SWAPUSAGE };
  size_t miblen = sizeof(mib) / sizeof(mib[0]);
  struct xsw_usage swap;
  len = sizeof(swap);
  err = sysctl(mib, miblen, &swap, &len, NULL, 0);
  if (err == 0)
    {
    this->AvailableVirtualMemory = static_cast< size_t >( swap.xsu_avail/1048576 );
    this->TotalVirtualMemory = static_cast< size_t >( swap.xsu_total/1048576 );
    }
#else
   this->AvailableVirtualMemory = 0;
   this->TotalVirtualMemory = 0;
#endif

// CPU Info
  len = sizeof(this->NumberOfPhysicalCPU);
  sysctlbyname("hw.physicalcpu", &this->NumberOfPhysicalCPU, &len, NULL, 0);
  len = sizeof(this->NumberOfLogicalCPU);
  sysctlbyname("hw.logicalcpu", &this->NumberOfLogicalCPU, &len, NULL, 0);
  this->Features.ExtendedFeatures.LogicalProcessorsPerPhysical =
    this->LogicalCPUPerPhysicalCPU();

  len = sizeof(value);
  sysctlbyname("hw.cpufrequency", &value, &len, NULL, 0);
  this->CPUSpeedInMHz = static_cast< float >( value )/ 1000000;


  // Chip family
  len = sizeof(this->ChipID.Family);
  //Seems only the intel chips will have this name so if this fails it is
  //probably a PPC machine
  err = sysctlbyname("machdep.cpu.family",
                     &this->ChipID.Family, &len, NULL, 0);
  if (err != 0) // Go back to names we know but are less descriptive
    {
    this->ChipID.Family = 0;
    ::memset(retBuf, 0, 128);
    len = 32;
    err = sysctlbyname("hw.machine", &retBuf, &len, NULL, 0);
    std::string machineBuf(retBuf);
    if (machineBuf.find_first_of("Power") != std::string::npos)
      {
      this->ChipID.Vendor = "IBM";
      len = sizeof(this->ChipID.Family);
      err = sysctlbyname("hw.cputype", &this->ChipID.Family, &len, NULL, 0);
      len = sizeof(this->ChipID.Model);
      err = sysctlbyname("hw.cpusubtype", &this->ChipID.Model, &len, NULL, 0);
      this->FindManufacturer();
      }
    }
  else  // Should be an Intel Chip.
    {
    len = sizeof(this->ChipID.Family);
    err =
      sysctlbyname("machdep.cpu.family", &this->ChipID.Family, &len, NULL, 0);

    ::memset(retBuf, 0, 128);
    len = 128;
    err = sysctlbyname("machdep.cpu.vendor", retBuf, &len, NULL, 0);
    // Chip Vendor
    this->ChipID.Vendor = retBuf;
    this->FindManufacturer();

    // Chip Model
    len = sizeof(value);
    err = sysctlbyname("machdep.cpu.model", &value, &len, NULL, 0);
    this->ChipID.Model = static_cast< int >( value );

    // Chip Stepping
    len = sizeof(value);
    value = 0;
    err = sysctlbyname("machdep.cpu.stepping", &value, &len, NULL, 0);
    if (!err)
      {
      this->ChipID.Revision = static_cast< int >( value );
      }

    // feature string
    char *buf = 0;
    size_t allocSize = 128;

    err = 0;
    len = 0;

    // sysctlbyname() will return with err==0 && len==0 if the buffer is too small
    while (err == 0 && len == 0)
      {
      delete[] buf;
      allocSize *= 2;
      buf = new char[allocSize];
      if (!buf)
        {
        break;
        }
      buf[0] = ' ';
      len = allocSize - 2; // keep space for leading and trailing space
      err = sysctlbyname("machdep.cpu.features", buf + 1, &len, NULL, 0);
      }
    if (!err && buf && len)
      {
      // now we can match every flags as space + flag + space
      buf[len + 1] = ' ';
      std::string cpuflags(buf, len + 2);

      if ((cpuflags.find(" FPU ")!=std::string::npos))
        {
        this->Features.HasFPU = true;
        }
      if ((cpuflags.find(" TSC ")!=std::string::npos))
        {
        this->Features.HasTSC = true;
        }
      if ((cpuflags.find(" MMX ")!=std::string::npos))
        {
        this->Features.HasMMX = true;
        }
      if ((cpuflags.find(" SSE ")!=std::string::npos))
        {
        this->Features.HasSSE = true;
        }
      if ((cpuflags.find(" SSE2 ")!=std::string::npos))
        {
        this->Features.HasSSE2 = true;
        }
      if ((cpuflags.find(" APIC ")!=std::string::npos))
        {
        this->Features.HasAPIC = true;
        }
      if ((cpuflags.find(" CMOV ")!=std::string::npos))
        {
        this->Features.HasCMOV = true;
        }
      if ((cpuflags.find(" MTRR ")!=std::string::npos))
        {
        this->Features.HasMTRR = true;
        }
      if ((cpuflags.find(" ACPI ")!=std::string::npos))
        {
        this->Features.HasACPI = true;
        }
      }
    delete[] buf;
    }

  // brand string
  ::memset(retBuf, 0, sizeof(retBuf));
  len = sizeof(retBuf);
  err = sysctlbyname("machdep.cpu.brand_string", retBuf, &len, NULL, 0);
  if (!err)
    {
    this->ChipID.ProcessorName = retBuf;
    this->ChipID.ModelName = retBuf;
    }

  // Cache size
  len = sizeof(value);
  err = sysctlbyname("hw.l1icachesize", &value, &len, NULL, 0);
  this->Features.L1CacheSize = static_cast< int >( value );
  len = sizeof(value);
  err = sysctlbyname("hw.l2cachesize", &value, &len, NULL, 0);
  this->Features.L2CacheSize = static_cast< int >( value );

  return true;
#else
  return false;
#endif
}


/** Extract a value from sysctl command */
std::string SystemInformationImplementation::ExtractValueFromSysCtl(const char* word)
{
  size_t pos = this->SysCtlBuffer.find(word);
  if(pos != this->SysCtlBuffer.npos)
    {
    pos = this->SysCtlBuffer.find(": ",pos);
    size_t pos2 = this->SysCtlBuffer.find("\n",pos);
    if(pos!=this->SysCtlBuffer.npos && pos2!=this->SysCtlBuffer.npos)
      {
      return this->SysCtlBuffer.substr(pos+2,pos2-pos-2);
      }
    }
  return "";
}


/** Run a given process */
std::string SystemInformationImplementation::RunProcess(std::vector<const char*> args)
{
  std::string buffer = "";

  // Run the application
  kwsysProcess* gp = kwsysProcess_New();
  kwsysProcess_SetCommand(gp, &*args.begin());
  kwsysProcess_SetOption(gp,kwsysProcess_Option_HideWindow,1);

  kwsysProcess_Execute(gp);

  char* data = NULL;
  int length;
  double timeout = 255;
  int pipe; // pipe id as returned by kwsysProcess_WaitForData()

  while( ( static_cast<void>(pipe = kwsysProcess_WaitForData(gp,&data,&length,&timeout)),
           (pipe == kwsysProcess_Pipe_STDOUT || pipe == kwsysProcess_Pipe_STDERR) ) ) // wait for 1s
    {
      buffer.append(data, length);
    }
  kwsysProcess_WaitForExit(gp, 0);

  int result = 0;
  switch(kwsysProcess_GetState(gp))
    {
    case kwsysProcess_State_Exited:
      {
      result = kwsysProcess_GetExitValue(gp);
      } break;
    case kwsysProcess_State_Error:
      {
      std::cerr << "Error: Could not run " << args[0] << ":\n";
      std::cerr << kwsysProcess_GetErrorString(gp) << "\n";
      } break;
    case kwsysProcess_State_Exception:
      {
      std::cerr << "Error: " << args[0]
                << " terminated with an exception: "
                << kwsysProcess_GetExceptionString(gp) << "\n";
      } break;
    case kwsysProcess_State_Starting:
    case kwsysProcess_State_Executing:
    case kwsysProcess_State_Expired:
    case kwsysProcess_State_Killed:
      {
      // Should not get here.
      std::cerr << "Unexpected ending state after running " << args[0]
                << std::endl;
      } break;
    }
  kwsysProcess_Delete(gp);
  if(result)
    {
    std::cerr << "Error " << args[0] << " returned :" << result << "\n";
    }
  return buffer;
}


std::string SystemInformationImplementation::ParseValueFromKStat(const char* arguments)
{
  std::vector<const char*> args;
  args.clear();
  args.push_back("kstat");
  args.push_back("-p");

  std::string command = arguments;
  size_t start = command.npos;
  size_t pos = command.find(' ',0);
  while(pos!=command.npos)
    {
    bool inQuotes = false;
    // Check if we are between quotes
    size_t b0 = command.find('"',0);
    size_t b1 = command.find('"',b0+1);
    while(b0 != command.npos && b1 != command.npos && b1>b0)
      {
      if(pos>b0 && pos<b1)
        {
        inQuotes = true;
        break;
        }
      b0 = command.find('"',b1+1);
      b1 = command.find('"',b0+1);
      }

    if(!inQuotes)
      {
      std::string arg = command.substr(start+1,pos-start-1);

      // Remove the quotes if any
      size_t quotes = arg.find('"');
      while(quotes != arg.npos)
        {
        arg.erase(quotes,1);
        quotes = arg.find('"');
        }
      args.push_back(arg.c_str());
      start = pos;
      }
    pos = command.find(' ',pos+1);
    }
  std::string lastArg = command.substr(start+1,command.size()-start-1);
  args.push_back(lastArg.c_str());

  args.push_back(0);

  std::string buffer = this->RunProcess(args);

  std::string value = "";
  for(size_t i=buffer.size()-1;i>0;i--)
    {
    if(buffer[i] == ' ' || buffer[i] == '\t')
      {
      break;
      }
    if(buffer[i] != '\n' && buffer[i] != '\r')
      {
      std::string val = value;
      value = buffer[i];
      value += val;
      }
    }
  return value;
}

/** Querying for system information from Solaris */
bool SystemInformationImplementation::QuerySolarisMemory()
{
#if defined (__SVR4) && defined (__sun)
  // Solaris allows querying this value by sysconf, but if this is
  // a 32 bit process on a 64 bit host the returned memory will be
  // limited to 4GiB. So if this is a 32 bit process or if the sysconf
  // method fails use the kstat interface.
#if SIZEOF_VOID_P == 8
  if (this->QueryMemoryBySysconf())
    {
    return true;
    }
#endif

  char* tail;
  unsigned long totalMemory =
       strtoul(this->ParseValueFromKStat("-s physmem").c_str(),&tail,0);
  this->TotalPhysicalMemory = totalMemory/128;

  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QuerySolarisProcessor()
{
  if (!this->QueryProcessorBySysconf())
    {
    return false;
    }

  // Parse values
  this->CPUSpeedInMHz = static_cast<float>(atoi(this->ParseValueFromKStat("-s clock_MHz").c_str()));

  // Chip family
  this->ChipID.Family = 0;

  // Chip Model
  this->ChipID.ProcessorName = this->ParseValueFromKStat("-s cpu_type");
  this->ChipID.Model = 0;

  // Chip Vendor
  if (this->ChipID.ProcessorName != "i386")
    {
    this->ChipID.Vendor = "Sun";
    this->FindManufacturer();
    }

  return true;
}


/** Querying for system information from Haiku OS */
bool SystemInformationImplementation::QueryHaikuInfo()
{
#if defined(__HAIKU__)

  // CPU count
  system_info info;
  get_system_info(&info);
  this->NumberOfPhysicalCPU = info.cpu_count;

  // CPU speed
  uint32 topologyNodeCount = 0;
  cpu_topology_node_info* topology = 0;
  get_cpu_topology_info(0, &topologyNodeCount);
  if (topologyNodeCount != 0)
    topology = new cpu_topology_node_info[topologyNodeCount];
  get_cpu_topology_info(topology, &topologyNodeCount);

  for (uint32 i = 0; i < topologyNodeCount; i++) {
    if (topology[i].type == B_TOPOLOGY_CORE) {
      this->CPUSpeedInMHz = topology[i].data.core.default_frequency /
        1000000.0f;
      break;
    }
  }

  delete[] topology;

  // Physical Memory
  this->TotalPhysicalMemory = (info.max_pages * B_PAGE_SIZE) / (1024 * 1024) ;
  this->AvailablePhysicalMemory = this->TotalPhysicalMemory -
    ((info.used_pages * B_PAGE_SIZE) / (1024 * 1024));


  // NOTE: get_system_info_etc is currently a private call so just set to 0
  // until it becomes public
  this->TotalVirtualMemory = 0;
  this->AvailableVirtualMemory = 0;

  // Retrieve cpuid_info union for cpu 0
  cpuid_info cpu_info;
  get_cpuid(&cpu_info, 0, 0);

  // Chip Vendor
  // Use a temporary buffer so that we can add NULL termination to the string
  char vbuf[13];
  strncpy(vbuf, cpu_info.eax_0.vendor_id, 12);
  vbuf[12] = '\0';
  this->ChipID.Vendor = vbuf;

  this->FindManufacturer();

  // Retrieve cpuid_info union for cpu 0 this time using a register value of 1
  get_cpuid(&cpu_info, 1, 0);

  this->NumberOfLogicalCPU = cpu_info.eax_1.logical_cpus;

  // Chip type
  this->ChipID.Type = cpu_info.eax_1.type;

  // Chip family
  this->ChipID.Family = cpu_info.eax_1.family;

  // Chip Model
  this->ChipID.Model = cpu_info.eax_1.model;

  // Chip Revision
  this->ChipID.Revision = cpu_info.eax_1.stepping;

  // Chip Extended Family
  this->ChipID.ExtendedFamily = cpu_info.eax_1.extended_family;

  // Chip Extended Model
  this->ChipID.ExtendedModel = cpu_info.eax_1.extended_model;

  // Get ChipID.ProcessorName from other information already gathered
  this->RetrieveClassicalCPUIdentity();

  // Cache size
  this->Features.L1CacheSize = 0;
  this->Features.L2CacheSize = 0;

  return true;

#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryQNXMemory()
{
#if defined(__QNX__)
  std::string buffer;
  std::vector<const char*> args;
  args.clear();

  args.push_back("showmem");
  args.push_back("-S");
  args.push_back(0);
  buffer = this->RunProcess(args);
  args.clear();

  size_t pos = buffer.find("System RAM:");
  if (pos == buffer.npos)
    return false;
  pos = buffer.find(":", pos);
  size_t pos2 = buffer.find("M (", pos);
  if (pos2 == buffer.npos)
    return false;

  pos++;
  while (buffer[pos] == ' ')
    pos++;

  this->TotalPhysicalMemory = atoi(buffer.substr(pos, pos2 - pos).c_str());
  return true;
#endif
  return false;
}

bool SystemInformationImplementation::QueryBSDMemory()
{
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
  int ctrl[2] = { CTL_HW, HW_PHYSMEM };
#if defined(HW_PHYSMEM64)
  int64_t k;
  ctrl[1] = HW_PHYSMEM64;
#else
  int k;
#endif
  size_t sz = sizeof(k);

  if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
    {
    return false;
    }

  this->TotalPhysicalMemory = k>>10>>10;

  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryQNXProcessor()
{
#if defined(__QNX__)
  // the output on my QNX 6.4.1 looks like this:
  // Processor1: 686 Pentium II Stepping 3 2175MHz FPU
  std::string buffer;
  std::vector<const char*> args;
  args.clear();

  args.push_back("pidin");
  args.push_back("info");
  args.push_back(0);
  buffer = this->RunProcess(args);
  args.clear();

  size_t pos = buffer.find("Processor1:");
  if (pos == buffer.npos)
    return false;

  size_t pos2 = buffer.find("MHz", pos);
  if (pos2 == buffer.npos)
    return false;

  size_t pos3 = pos2;
  while (buffer[pos3] != ' ')
    --pos3;

  this->CPUSpeedInMHz = atoi(buffer.substr(pos3 + 1, pos2 - pos3 - 1).c_str());

  pos2 = buffer.find(" Stepping", pos);
  if (pos2 != buffer.npos)
    {
    pos2 = buffer.find(" ", pos2 + 1);
    if (pos2 != buffer.npos && pos2 < pos3)
      {
      this->ChipID.Revision = atoi(buffer.substr(pos2 + 1, pos3 - pos2).c_str());
      }
    }

  this->NumberOfPhysicalCPU = 0;
  do
    {
    pos = buffer.find("\nProcessor", pos + 1);
    ++this->NumberOfPhysicalCPU;
    } while (pos != buffer.npos);
  this->NumberOfLogicalCPU = 1;

  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryBSDProcessor()
{
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
  int k;
  size_t sz = sizeof(k);
  int ctrl[2] = { CTL_HW, HW_NCPU };

  if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
    {
    return false;
    }

  this->NumberOfPhysicalCPU = k;
  this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;

#if defined(HW_CPUSPEED)
  ctrl[1] = HW_CPUSPEED;

  if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
    {
    return false;
    }

  this->CPUSpeedInMHz = (float) k;
#endif

#if defined(CPU_SSE)
  ctrl[0] = CTL_MACHDEP;
  ctrl[1] = CPU_SSE;

  if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
    {
    return false;
    }

  this->Features.HasSSE = (k > 0);
#endif

#if defined(CPU_SSE2)
  ctrl[0] = CTL_MACHDEP;
  ctrl[1] = CPU_SSE2;

  if (sysctl(ctrl, 2, &k, &sz, NULL, 0) != 0)
    {
    return false;
    }

  this->Features.HasSSE2 = (k > 0);
#endif

#if defined(CPU_CPUVENDOR)
  ctrl[0] = CTL_MACHDEP;
  ctrl[1] = CPU_CPUVENDOR;
  char vbuf[25];
  ::memset(vbuf, 0, sizeof(vbuf));
  sz = sizeof(vbuf) - 1;
  if (sysctl(ctrl, 2, vbuf, &sz, NULL, 0) != 0)
    {
    return false;
    }

  this->ChipID.Vendor = vbuf;
  this->FindManufacturer();
#endif

  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryHPUXMemory()
{
#if defined(__hpux)
  unsigned long tv=0;
  unsigned long tp=0;
  unsigned long av=0;
  unsigned long ap=0;
  struct pst_static pst;
  struct pst_dynamic pdy;

  unsigned long ps = 0;
  if (pstat_getstatic(&pst, sizeof(pst), (size_t) 1, 0) == -1)
    {
    return false;
    }

  ps = pst.page_size;
  tp =  pst.physical_memory *ps;
  tv = (pst.physical_memory + pst.pst_maxmem) * ps;
  if (pstat_getdynamic(&pdy, sizeof(pdy), (size_t) 1, 0) == -1)
    {
    return false;
    }

  ap = tp - pdy.psd_rm * ps;
  av = tv - pdy.psd_vm;
  this->TotalVirtualMemory = tv>>10>>10;
  this->TotalPhysicalMemory = tp>>10>>10;
  this->AvailableVirtualMemory = av>>10>>10;
  this->AvailablePhysicalMemory = ap>>10>>10;
  return true;
#else
  return false;
#endif
}

bool SystemInformationImplementation::QueryHPUXProcessor()
{
#if defined(__hpux)
# if defined(KWSYS_SYS_HAS_MPCTL_H)
  int c = mpctl(MPC_GETNUMSPUS_SYS, 0, 0);
  if (c <= 0)
    {
    return false;
    }

  this->NumberOfPhysicalCPU = c;
  this->NumberOfLogicalCPU = this->NumberOfPhysicalCPU;

  long t = sysconf(_SC_CPU_VERSION);

  if (t == -1)
    {
    return false;
    }

  switch (t)
    {
    case CPU_PA_RISC1_0:
      this->ChipID.Vendor = "Hewlett-Packard";
      this->ChipID.Family = 0x100;
      break;
    case CPU_PA_RISC1_1:
      this->ChipID.Vendor = "Hewlett-Packard";
      this->ChipID.Family = 0x110;
      break;
    case CPU_PA_RISC2_0:
      this->ChipID.Vendor = "Hewlett-Packard";
      this->ChipID.Family = 0x200;
      break;
#  if defined(CPU_HP_INTEL_EM_1_0) || defined(CPU_IA64_ARCHREV_0)
#   ifdef CPU_HP_INTEL_EM_1_0
    case CPU_HP_INTEL_EM_1_0:
#   endif
#   ifdef CPU_IA64_ARCHREV_0
    case CPU_IA64_ARCHREV_0:
#   endif
      this->ChipID.Vendor = "GenuineIntel";
      this->Features.HasIA64 = true;
      break;
#  endif
    default:
      return false;
    }

  this->FindManufacturer();

  return true;
# else
  return false;
# endif
#else
  return false;
#endif
}

/** Query the operating system information */
bool SystemInformationImplementation::QueryOSInformation()
{
#if defined(_WIN32)

  this->OSName = "Windows";

  OSVERSIONINFOEXW osvi;
  BOOL bIsWindows64Bit;
  BOOL bOsVersionInfoEx;
  char operatingSystem[256];

  // Try calling GetVersionEx using the OSVERSIONINFOEX structure.
  ZeroMemory (&osvi, sizeof (OSVERSIONINFOEXW));
  osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOEXW);
#ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
# pragma warning (push)
# ifdef __INTEL_COMPILER
#  pragma warning (disable:1478)
# else
#  pragma warning (disable:4996)
# endif
#endif
  bOsVersionInfoEx = GetVersionExW ((OSVERSIONINFOW*)&osvi);
  if (!bOsVersionInfoEx)
    {
    osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFOW);
    if (!GetVersionExW((OSVERSIONINFOW*)&osvi))
      {
      return false;
      }
    }
#ifdef KWSYS_WINDOWS_DEPRECATED_GetVersionEx
# pragma warning (pop)
#endif

  switch (osvi.dwPlatformId)
    {
    case VER_PLATFORM_WIN32_NT:
      // Test for the product.
      if (osvi.dwMajorVersion <= 4)
        {
        this->OSRelease = "NT";
        }
      if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 0)
        {
        this->OSRelease = "2000";
        }
      if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
        {
        this->OSRelease = "XP";
        }
      // XP Professional x64
      if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 2)
        {
        this->OSRelease = "XP";
        }
#ifdef VER_NT_WORKSTATION
      // Test for product type.
      if (bOsVersionInfoEx)
        {
        if (osvi.wProductType == VER_NT_WORKSTATION)
          {
          if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 0)
            {
            this->OSRelease = "Vista";
            }
          if (osvi.dwMajorVersion == 6 && osvi.dwMinorVersion == 1)
            {
            this->OSRelease = "7";
            }
// VER_SUITE_PERSONAL may not be defined
#ifdef VER_SUITE_PERSONAL
          else
            {
            if (osvi.wSuiteMask & VER_SUITE_PERSONAL)
              {
              this->OSRelease += " Personal";
              }
            else
              {
              this->OSRelease += " Professional";
              }
            }
#endif
          }
        else if (osvi.wProductType == VER_NT_SERVER)
          {
          // Check for .NET Server instead of Windows XP.
          if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
            {
            this->OSRelease = ".NET";
            }

          // Continue with the type detection.
          if (osvi.wSuiteMask & VER_SUITE_DATACENTER)
            {
            this->OSRelease += " DataCenter Server";
            }
          else if (osvi.wSuiteMask & VER_SUITE_ENTERPRISE)
            {
            this->OSRelease += " Advanced Server";
            }
          else
            {
            this->OSRelease += " Server";
            }
          }

        sprintf (operatingSystem, "%ls (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
        this->OSVersion = operatingSystem;
        }
      else
#endif        // VER_NT_WORKSTATION
        {
        HKEY hKey;
        wchar_t szProductType[80];
        DWORD dwBufLen;

        // Query the registry to retrieve information.
        RegOpenKeyExW(HKEY_LOCAL_MACHINE, L"SYSTEM\\CurrentControlSet\\Control\\ProductOptions", 0, KEY_QUERY_VALUE, &hKey);
        RegQueryValueExW(hKey, L"ProductType", NULL, NULL, (LPBYTE) szProductType, &dwBufLen);
        RegCloseKey (hKey);

        if (lstrcmpiW(L"WINNT", szProductType) == 0)
          {
          this->OSRelease += " Professional";
          }
        if (lstrcmpiW(L"LANMANNT", szProductType) == 0)
          {
          // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
          if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
            {
            this->OSRelease += " Standard Server";
            }
          else
            {
            this->OSRelease += " Server";
            }
          }
        if (lstrcmpiW(L"SERVERNT", szProductType) == 0)
          {
          // Decide between Windows 2000 Advanced Server and Windows .NET Enterprise Server.
          if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
            {
            this->OSRelease += " Enterprise Server";
            }
          else
            {
            this->OSRelease += " Advanced Server";
            }
          }
         }

      // Display version, service pack (if any), and build number.
      if (osvi.dwMajorVersion <= 4)
        {
        // NB: NT 4.0 and earlier.
        sprintf (operatingSystem, "version %ld.%ld %ls (Build %ld)",
                 osvi.dwMajorVersion,
                 osvi.dwMinorVersion,
                 osvi.szCSDVersion,
                 osvi.dwBuildNumber & 0xFFFF);
        this->OSVersion = operatingSystem;
        }
      else if (osvi.dwMajorVersion == 5 && osvi.dwMinorVersion == 1)
        {
        // Windows XP and .NET server.
        typedef BOOL (CALLBACK* LPFNPROC) (HANDLE, BOOL *);
        HINSTANCE hKernelDLL;
        LPFNPROC DLLProc;

        // Load the Kernel32 DLL.
        hKernelDLL = LoadLibraryW(L"kernel32");
        if (hKernelDLL != NULL)  {
          // Only XP and .NET Server support IsWOW64Process so... Load dynamically!
          DLLProc = (LPFNPROC) GetProcAddress (hKernelDLL, "IsWow64Process");

          // If the function address is valid, call the function.
          if (DLLProc != NULL) (DLLProc) (GetCurrentProcess (), &bIsWindows64Bit);
          else bIsWindows64Bit = false;

          // Free the DLL module.
          FreeLibrary (hKernelDLL);
          }
        }
      else
        {
        // Windows 2000 and everything else.
        sprintf (operatingSystem,"%ls (Build %ld)", osvi.szCSDVersion, osvi.dwBuildNumber & 0xFFFF);
        this->OSVersion = operatingSystem;
        }
      break;

    case VER_PLATFORM_WIN32_WINDOWS:
      // Test for the product.
      if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 0)
        {
        this->OSRelease = "95";
        if(osvi.szCSDVersion[1] == 'C')
          {
          this->OSRelease += "OSR 2.5";
          }
        else if(osvi.szCSDVersion[1] == 'B')
          {
          this->OSRelease += "OSR 2";
          }
      }

      if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 10)
        {
        this->OSRelease = "98";
        if (osvi.szCSDVersion[1] == 'A' )
          {
          this->OSRelease += "SE";
          }
        }

      if (osvi.dwMajorVersion == 4 && osvi.dwMinorVersion == 90)
        {
        this->OSRelease = "Me";
        }
      break;

    case VER_PLATFORM_WIN32s:
      this->OSRelease = "Win32s";
      break;

    default:
      this->OSRelease = "Unknown";
      break;
  }

  // Get the hostname
  WORD wVersionRequested;
  WSADATA wsaData;
  char name[255];
  wVersionRequested = MAKEWORD(2,0);

  if ( WSAStartup( wVersionRequested, &wsaData ) == 0 )
    {
    gethostname(name,sizeof(name));
    WSACleanup( );
    }
  this->Hostname = name;

  const char* arch = getenv("PROCESSOR_ARCHITECTURE");
  if(arch)
    {
    this->OSPlatform = arch;
    }

#else

  struct utsname unameInfo;
  int errorFlag = uname(&unameInfo);
  if(errorFlag == 0)
    {
    this->OSName = unameInfo.sysname;
    this->Hostname = unameInfo.nodename;
    this->OSRelease = unameInfo.release;
    this->OSVersion = unameInfo.version;
    this->OSPlatform = unameInfo.machine;
    }

#ifdef __APPLE__
  this->OSName="Unknown Apple OS";
  this->OSRelease="Unknown product version";
  this->OSVersion="Unknown build version";

  this->CallSwVers("-productName",this->OSName);
  this->CallSwVers("-productVersion",this->OSRelease);
  this->CallSwVers("-buildVersion",this->OSVersion);
#endif

#endif

  return true;
}

int SystemInformationImplementation::CallSwVers(
      const char *arg,
      std::string &ver)
{
#ifdef __APPLE__
  std::vector<const char*> args;
  args.push_back("sw_vers");
  args.push_back(arg);
  args.push_back(0);
  ver = this->RunProcess(args);
  this->TrimNewline(ver);
#else
  // avoid C4100
  (void)arg;
  (void)ver;
#endif
  return 0;
}

void SystemInformationImplementation::TrimNewline(std::string& output)
{
  // remove \r
  std::string::size_type pos=0;
  while((pos = output.find("\r", pos)) != std::string::npos)
    {
    output.erase(pos);
    }

  // remove \n
  pos = 0;
  while((pos = output.find("\n", pos)) != std::string::npos)
    {
    output.erase(pos);
    }
}


/** Return true if the machine is 64 bits */
bool SystemInformationImplementation::Is64Bits()
{
  return (sizeof(void*) == 8);
}


} // namespace @KWSYS_NAMESPACE@