I)SIGHT Cross-Platform Make (CM ake)

| ntroduction

The Cross-Platform Make facility (CMake) manages the build process—in a portable manner—across
Microsoft Visua C++ and Unix platforms. CMake can be used to compile source code, create
libraries, and build executables in arbitrary combination. On Unix platforms, CMake uses configure to
build makefiles that may be used with the stlandard make facility. In the Microsoft Visua C++
environment, CMake creates projects and workspaces that can be imported into MSVC. (These
projects and workspaces are created by running the program CMakeSetup.exe.)

CMake is designed to support complex directory hierarchies and applications dependent on severa
libraries. For example, CMake supports projects consisting of multiple toolkits (i.e., libraries), where
each toolkit might contain severa directories, and the gpplication depends on the toolkits plus additiona
code. CMake can aso handle situations where executables must be built in order to generate code that
is then compiled and linked into afind application.

Usng CMakeissmple. The build processis controlled by cresting one or more CMakeLigsitxt filesin
each directory (including subdirectories) that make up a project. Each CMakelists.txt congsts of one
or more commands. Each command has the form COMMAND (args...) where COMMAND isthe
name of the command, and args is a white-space separated list of arguments. CMake provides many
pre-defined commands, but if you need to, you can add your own commands. In addition, the advanced
user can add other makefile generators for a particular compiler/OS combination.

User's Guide

This section describes how to use CMake from the user’ s point of view. That is, if your amisto use
CMake to manage your build process, read this section first. A Developer's Guide section follows later
in this document to explain the internals of CMake, and how to setup the CMake environment. Read
that section only if you plan to ingtdl, extend, or enhance the features of CMake.

This section of the User’s Guide begins with a description of the CMake inputs. Examples then follow
to clarify these descriptions.

Input to CMake
CMake uses the following files and variables. Y ou must set these variables and cregte these files before

CMake will run properly.
1. Variables (expanded as necessary during the CMake process):

${ CMAKE_SOURCE_DIR} The root directory of the source code directory tree.

H CMAKE_BINARY_DIR} The root directory of the build tree where binaries are
placed. Thisincludes object files, libraries, and executables.

H WIN32} Defined on any Microsoft Windows systems

K UNIX} Defined on any UNIX systems. Note that with cygwin on
Microsoft Windows both WIN32 and UNIX will be
defined.

Typicdly the user indirectly defines these variables by running aprogram. In MSVC, the user runsa
program (CMakeSetup.exe) defining the location of the source code and where the binaries (object
code, libraries, and executables) are placed. On Unix, configure is used to indicate where the
source code and binaries are located. (The location of the configure file is the source directory, the
directory in which configure is run is the binary directory.)

. FileCMakeLigs.txt:

Thisinput file specifies the things that need to be built in the current directory. The CMakelLists.txt
conssts of one or more commands. Each command is of the form:

COMMAND(args...)

Where COMMAND isthe name of the command, and args is awhite-space separated list of
arguments to the command. (Arguments with embedded white- space should be quoted.) Note that
for agiven project, one or more CMakel igtsitxt files may be required depending on the number
and organization of the directories.

CMake defines a number of commands. A brief summary of these commands follows here. Later in
the document an exhaustive lig of dl pre-defined commandsis presented. (Y ou may aso add your
own commands, see the Developer’ s Guide for more information.)

A) Build Targets
SOURCE_FILES()
ABSTRACT_CLASSES()
SUBDIRS()
LIBRARY()
EXECUTABLES)
AUX_SOURCE._DIRECTORY ()
PROJECT()

CMake works recursively, descending from the current directory into the subdirectories listed in
the SUBDIRS variable. The variable SOURCE_FILES ligs al source code that must be
compiled for dl platforms (Note: currently only C and C++ code can be compiled.)
WIN32_SOURCE _FILESisalig of dl source code that must be compiled in the MSVC

environment. Smilarly, UNIX_SOURCE_FILES ligts dl source code that must be compiled on
Unix platforms. ABSTRACT _CLASSES are modules that must be compiled but are not
ingtantiable (i.e., ingtances cannot be created because the class has pure virtua functions). This
isimportant in some applications where wrapper code can be generated around instantiable
modules. LIBRARY definesthe name of alibrary into which dl object code isinserted and
EXECUTABLES are any executables that must be built. (Note: source code is compiled firdt,
then libraries are built, and then executables are created.) The AUX_SOURCE_DIRECTORY
isadirectory where other source code, not in this directory, whose object code isto be
inserted into the current LIBRARY . All source filesin the AUX_SOURCE_DIRECTORY are
compiled (eg. *.c, *.cxx, *.cpp, etc.). PROJECT isaspecid variable used in the MSVC to
cregte the project for the compiler.

B) Build flags and options. In addition to the commands listed above, CMakel igsitxt often
contain the following commeands:

INCLUDE_DIRECTORIES()
LINK_DIRECTORIES()
LINK_LIBRARIES()
WIN32_LIBRARIES()
UNIX_LIBRARIES()

These commands define directories and libraries used to compile source code and build
executables. An important feature of the commands listed above is that are recursvely
expanded as each subdirectory isvidted. That is, as CMake descends through a directory
hierarchy (defined by SUBDIRY)) these commands are expanded each time a definition for a
command is encountered. For example, if in the top-level directory is defined by
INCLUDE_DIRECTORIES(/us/include), with SUBDIRS(./subdirl), and thefile
Jsubdirl/CMakelLigtsitxt defines INCLUDE_DIRECTORIES(/tmp/foobar), then the net result
is

INCLUDE_DIRECTORIES(/usr/include /tmp/foobar)

CMake Commands
The following is an exhaudive list of pre-defined CMake commands, with brief descriptions.

ABSTRACT _FLES- A lig of abgtract classes, useful for wrappers.
Usage ABSTRACT _FILES(filel file2 ..

ADD_TARGET - Add an extratarget to the build system.
Usage ADD_TARGET(Name "command to run")

AUX_SOURCE_DIRECTORY - Add al the source files found in the specified directory to the
build.
Usage: AUX_SOURCE_DIRECTORY (dir)

EXECUTABLES - Add alig of executablesfiles.
Usage EXECUTABLES(filel file2 ...)

FIND_INCLUDE - Find an include path.
Usage: FIND_INCLUDE(DEFINE try1try2 ..

FIND_LIBRARY - Findalibrary.
Usage: FIND_LIBRARY (DEFINE try1 try2)

FIND_PROGRARM - Find an executable program.
Usage: FIND_PROGRAM(NAME executablel executable? ...)

INCLUDE_DIRECTORIES - Add include directories to the build.
Usage: INCLUDE_DIRECTORIES(dirl dir2 ...)

LIBRARY - Set anamefor alibrary.
Usage: LIBRARY (libraryname)

LINK_DIRECTORIES - Specify link directories.

Usage: LINK_DIRECTORIES(directoryl directory? ...)

Specify the pathsto the libraries that will be linked in. The directories can use built in definitionslike
CMAKE_BINARY_DIR and CMAKE_SOURCE_DIR.

LINK_LIBRARIES - Specify alist of librariesto be linked into executables or shared objects.
Usage: LINK_LIBRARIES(library1 library?2)

Specify aligt of libraries to be linked into executables or shared objects. This command is passed
down to dl other commands. The library name should be the same as the name used in the
LIBRARY (library) command.

PROJECT - Set aname for the entire project. One argument.
Usage: PROJECT (projectname)

SOURCE_FILES - Add aligt of sourcefiles, Usage: SOURCE. FILESfilel file2 ..)

SOURCE_FILES REQUIRE - Add aligt of sourcefilesif therequired variables are st.
Usage: SOURCE_FILES REQUIRE(varl var2 ... SOURCES BEGIN filel file2 ...)

SUBDIRS - Add alist of subdirectoriesto the build.
Usage: SUBDIRS(dirl dir2 ...)

Add aligt of subdirectoriesto the build. Thiswill cause any CMakeligsitxt filesin the sub-
directories to be processed by CMake.

TESTS - Add alist of executables filesthat are run astests.
Usage TESTS(filel file2 ...

UNIX_DEFNES - Add -D flagsto the command line for Unix only.
Usage: UNIX_DEFINES(-DFOO -DBAR)
Add -D flagsto the command line for Unix only.

UNIX_LIBRARIES - Add libraries that are only used for Unix programs.
Usage: UNIX_LIBRARIES(library -Im ...)

WIN32_DEFINES - Add -D define flags to command line for Win32 environments.
Usage: WIN32_DEFINES(-DFOO -DBAR ...)
Add -D define flags to command line for Win32 environments.

WIN32 _LIBRARIES - Add librariesthat are only used for Win32 programs.
Usage WIN32_LIBRARIES(library -Im ...)

Using CM ake

The indructions in this section assume that the CMake environment has been properly ingtaled on your
system. (See the Deveoper's Guide later in this document for ingtructions on ingaling the CMake
environment.) These ingructions are fairly genera, each section has examples demondirating the use of
CMakein aparticular circumstance.

A Simple Build
The build process varies depending on the platform as described in the following sections.

Microsoft Visual C++ (MSVC)
In the MSV C environment, two executable programs are used.
CMakeSetup.exe — GUI-based toal for configuring CMake in the MSV C environment.

CMakeSetupCM D.exe — windows command line version of CmakeSetup

Typicaly the user will use CmakeSetup.exe for configuring in the MSV C environment. For those who
prefer a scripting/command- line environment; however, CM akeSetupCMD.exe provides an aternative.
(Note: these programs may have to be built from the CMake/Source directory, so the executable may
not initidly exist. Once you load and build the workspace as described in the following, the executables
will be created.)

1. Using CMakeSetup:

Load CMake/Source/CM akeSetup.dsw into MSVC.

Build CMakeSetup.exe

Run CMakeSetup.exe

Define the variables CMAKE_SOURCE_DIR and CMAKE_BINARY _DIR by typingin
the blanksin the GUI.

Click OK.

Load the generated project file. The project file will be found in CMAKE_BINARY_DIR.
Build the appropriate project(s).

The following example demondirates the use of CMake in the NLM Insght Segmentation and
Regidration Toolkit environment. Begin by opening the CMakeSetup.dsw workspace by choosing
File/Open Workspace...

x|
Look in: Ia Source j . £ ER-

_1cys
_1Desbug
_ IMFCDialog

iCMakeSetup.dsw

File hame: |I:MakeSetup.dsw Open I
Files of type: IWorkspaces [.dsw; mdp) j Cancel |

i

Next, run and build CMakeSetup.exe by choosing Build/Execute. MSV C may indicate that some
files are out- of-date and need rebuilding. Answer Y ES and proceed.

*.. CMakeSetup - Microsoft ¥isual C++ 4 o IEI|5[

JJ File Edit Yiew Insert Project |Buid Tools ‘Window Help

3 | = LG | 4 & 2 Compile ChI+FT =] | 2
= Build CMakeSetup.exe F7 =
| EAbctlg (1] g8 pebuid

fa] Bakch Build. ..

CMakeSetup classes Clean
ChakeSetupChD clasze:

Start Debug 4

Debugger Remate Conneckion,, .

Set Active Configuration, ..
Configurations. ..
Profile. ..

al | 2]
® 8 Clas. | Res... | [=] Filev..
= =
4 =
5
[4% Build { Tebug & Findin Files 1 Findin Files2 % Results 7/ IERE r
E xecutes the program i

Once CMakeSetup.exe is compiled, it will run and the following GUI will gppear as shown below.
Notice that the location of the source root directory (CMAKE_SOURCE_DIR) and the binary
root directory (CMAKE_BINARY_DIR) are set. (Use the browse button if necessary to
set/locate these directories. If the binary directory does not exig, it will be crested.)
CMakeSetup.exe will run for asecond or two and then disappear.

& CMakesetupDialog

Ok,
‘wihere is the source code:

E
[I-AIrsight Browse... | Cancel |

‘where do you want to build the binaries:

II:\InsightBin Browse... |

CMakeSetup.exe generates aM SV C project file named according the CMake variable PROJECT
described previoudy. In this example, PROJECT(ITK), so the MSVC workspace is ITK.dsw
(andisplaced inthe CMAKE _BINARY_DIR, in this example I \IngghtBin). The next gepin this
process is to open the workspace with MSV C. Once open, the project can be built by choosng
Build/Batch Build. Thiswill build adl the projects contained in the workspace.

**., ITK - Microsoft ¥isual C++ - [ith...\Common'jitkTimeStamp.cxx]) -0l x|
JJ File Edit Wew Insert Project |Build Tools Window Help _Iﬁllﬂ
“'i% | = L | ¢ B | £ Compile ChHFT -] | _ﬂ‘
- Build itkShrinkImageTest.exe F7 5 = |
“IGIc-balsj [0 o £ pebuid -] - HJ@ B oLy E|
Biatch Build... ZI
“Workspace 1TK" 41 project(s) Clgan

|thasu:Arch|t,eclureTest files Start Debug »

-- ITK.Commaon files = e 5

itkDataTypeT est filez i e R

B8 KE weeplionDbject T est files ¥ Execute itkShrinkImageTest.exe Chrl+FS
- itkE wtracttd ezhConnectedR en
- itklmagelteratorT est files Set Active Configuration. ..
- itkImagetd omentsTest files Configurations. .

- itkMeshinstanceT est files
B8] itkMeshT est files

- itkM eighborhoodDperatorT est fles
- ITEMumencs files

- itk PineléiccessTest files

- itk S calarT est files

28 itk ShrinklmageT est files
A28 itkSmartPainterT est files
8 itk TraitsTest files

-- itk ectorT est files

- test_comples files =
fi=m) I ' - R o

| _>I_I

i CIassViewl B FiIeViewI 14l |

3]
k]|

Profile. ..

-

A[* T Build { Debug % Findin Files 1 3 Find in Files2 & Results 7 Nall

Builds multiple projects

Ntm_u'ﬁ_ I

2. Using CMakeSetupCMD.exe:

Load CMake/Source/CM akeSetup.dsw into MSVC.

Build CMakeSetup.exe (thiswill generate CMakeSetupCMD.exe).

Run CMakeSetupCM D.exe with the appropriate command-line arguments.

Load the generated project file. The project file will be found in CMAKE_BINARY _DIR.
Build the appropriate project(s).

Using the command line verson CMakeSetupCMD.exe is Smilar to the process described
previoudy. The only difference is that CMakeSetupCMD.exe is run instead of CMakeSetup.exe.

The following example demongtrates the use of CMakeSetupCMD.exe in the NLM Ingght
Segmentation and Regigration Toolkit environment. To run the program you must have aM S-DOS
window or amilar (cygwin shell). Then type:

CMakeSetupCMD.exe Makefilein -DSW|-DSP\
—-H$CMAKE_SOURCE _DIR -B$CMAKE_BINARY_DIR\
—D(current source directory) —O(current binary directory)

(The“\” indicates line continuation, you do not have to type this.) This usage reflects that
CMakeSetupCMD.exe can be run anywhere in the source directory tree. Therefore, not only must
you definethe CMAKE_SOURCE_DIR and CMAKE _BIN_DIR variable definitions using the—H
—B command line arguments. In addition, you must indicate where you are in the source tree using
the —D argument, and the equivaent location in the binary directory tree with the —O argument. In
addition, you must specify whether to build the workspace containing al the projects, or whether to
build just the project corresponding to this directory.

Unix
On Unix, configure and the standard make utility are used as follows:

Run configure from the CMAKE_BINARY_DIR.
Type“make’ in the same dir.

The CMake variables CMAKE_SOURCE DIR and CMAKE_BINARY _DIR are defined when
configureis run. The directory that configure is run from determines where the binaries are placed; the
location of the configure program determines where the source tree is located.

Two examples of CMake usage on the Unix platform follow (using the Indght system). In the first
example, and in-place build is performed, i.e., the binaries are placed in the same directory asthe
source code.

cd (into the CMAKE_SOURCE _DIR directory)
Jeonfigure
make

In the second example, an out-of-place build is performed, i.e., the source code, libraries, and
executables are produced in a directory separate from the source code directory(ies).

mkdir Build-dir

cd Build-dir

$CMAKE_SOURCE DIR /configure
make

Developing with CM ake

The preceding ingtructions enable users to compile and build CMake projects. If all you needtodois
use the resulting binary code, these indructions are sufficient. However, if you are planning to extend
your ingtdlation by adding new source files, libraries, and/or directories, you will need to modify the
CMakeligsitxt.

Adding A New Source Module

One of the most common ways to extend CMake isto add a new, compilable source module. (Here
we mean that a compilable module is a source code module that when processed by a compiler
generates object code. A .h header file or .txx template file is not a compilable module by this
definition). Adding a source module means adding it the list of source files by adding it to the
SOURCE_FILES command defined in the CMakeLidsitxt file. Here is an example where the module
itkFoo.cxx is added.

SOURCE_FILEY(
itkDataObject
itkDirectory
itkFoo

)

Once the source module is added, you can compile as usud.

Adding A New Directory
Another common way to extend aproject isto add a new directory. Thisinvolves three steps.

1. Createthe directory somewhere in the CMAKE_SOURCE DIR directory hierarchy.
2. Addthedirectory to the SUBDIRS command in CMakeLigtsitxt

3. Create aCMakeligs.txt in the new directory with the gppropriate variables defined.

Developers Guide
This section describes some of the internals of CMake. Read this section only if you intend to extend or
debug CMake.

Installing CM ake

To ingtal CMake, you must copy the directory structure and source code found in the CMake directory
into the CMAKE_SOURCE_DIR directory. More advanced users may also want to modify the
configure.in filesto control particular features of the project.

Additional Platform-Dependent Details
The following describes platform-dependent details.

Microsoft Visual C++ (MSVC)

1. CMakeSetupConfig.MSC — The configuration input file for CMakeSetup when Microsoft projects
are created. Thisisused to generate heaeder files that would normaly be created by configure on
Unix.

itk configurefile, just copy the .hinto the.h
H CMAKE_BINARY_DIR}:itkConfigureh:${ CMAKE_SOURCE_DIR}/itkConfigure.h.in

for the vd configure copy the vc60.h config file
K CMAKE _BINARY _DIR}/Code/Insight3DParty/vxI/vcl:vel_config.h:5{ CMAKE _SOURCE
_DIR}/Code/lnaght3DParty/vxl/vc/va_config-ve60.h

Unix

1. Unix scripts and programs. In genera you should never have to modify these.
configurein — used by autoconf to generate configure
configure — run on Unix to configure the build
CMakeBuildTargets — Unix program to read CMakeligts.txt and generate
CMakeTargets.make
makefile fragments.
CMakeMaster.make.in — main file to be induded by makefiles
CMakeVariablesmakein — dl make varidbles are st in thisfile
CMakeRulesmake.in — All build rules are here (except Smple Rules)
CMakeSmpleRulesmakein - smple build rulesfor .0 to .cxx, thisis separate to be able to
build CMakeBuildTargets itsdif.
CMakeloca.make.in — Place for hand configuration
CMakeTargets.make — generated rules for make style build in each directory
MakefileTemplate make.in — master makefile template used by configure to generate
Makefiles

Adding a New Rule
Rules can be added to CMake by deriving new commands from the class cnCommand (defined in
CMake/Source/lcmCommand.h.cxx).

Adding a New M akefile Generator

Different types of makefiles (corresponding to a different compiler and/or operating system) can be
added by subclassing from cmM akefileGenerator (defined in cnMakefileGenerator.h/.cxx). Makefile
generators process the information defined by the commands in CMakeliststxt to generate the
appropriate makefile(s).

Further Information
Bill Hoffman was the principal developersof CMake. Reach him at bill.hoffman@kitware.com This
document was written by Will Schroeder and Bill Hoffman. Reach Will a will.schroeder@kitware.com.

To learn more about the NIH/NLM Insght Segmentation and Regigtration Toolkit, see the Web dite at
http//mww . kitware.convingght.html.

