This enables CMake to create Makefiles targeting Windows CE devices.
CMake needs to be run within a cross compile command prompt and requires
a toolchain file which sets CMAKE_SYSTEM_NAME to "WindowsCE" and
optionally CMAKE_SYSTEM_VERSION.
In commit 485a940e (VS: Simplify MSVC version reporting, 2012-08-23) we
accidentally flipped the 0/1 values of MSVC_IDE. Flip them back and
teach the CheckCompilerRelatedVariables test to check the variable.
Remove the old-style "Windows-cl.cmake" and its helper "cl.cmake". Load
the information through new-style "Platform/Windows-MSVC-<lang>.cmake"
files. Factor information common to C and CXX into a helper file
"Platform/Windows-MSVC.cmake" loaded from the per-language files.
Teach Windows-cl.cmake to use CMAKE_(C|CXX)_COMPILER_VERSION to set the
"MSVC##" and MSVC_VERSION variables. It no longer needs the IDE generator
to dictate the version or to detect the version by running the
command-line tool for NMake and Ninja generators. Drop configuration of
CMakeCPlatform.cmake and CMakeCXXPlatform.cmake from Windows-cl.cmake.in
because all the results it saved are now cheap to compute every time.
At the top of a build tree we configure inside the CMakeFiles directory
files such as "CMakeSystem.cmake" and "CMake<lang>Compiler.cmake" to
save information detected about the system and compilers in use. The
method of detection and the exact results store varies across CMake
versions as things improve. This leads to problems when loading files
configured by a different version of CMake. Previously we ignored such
existing files only if the major.minor part of the CMake version
component changed, and depended on the CMakeCache.txt to tell us the
last version of CMake that wrote the files. This led to problems if the
user deletes the CMakeCache.txt or we add required information to the
files in a patch-level release of CMake (still a "feature point" release
by modern CMake versioning convention).
Ensure that we always have version-consistent platform information files
by storing them in a subdirectory named with the CMake version. Every
version of CMake will do its own system and compiler identification
checks even when a build tree has already been configured by another
version of CMake. Stored results will not clobber those from other
versions of CMake which may be run again on the same tree in the future.
Loaded results will match what the system and language modules expect.
Rename the undocumented variable CMAKE_PLATFORM_ROOT_BIN to
CMAKE_PLATFORM_INFO_DIR to clarify its purpose. The new variable points
at the version-specific directory while the old variable did not.
Several more recent Visual Studio Express editions are now available and
they support debug builds. Simplify our VS platform files by removing
support for these old tools. If anyone still uses them we can restore
support with a more modern way to test for them.
Ancient versions of CMake required else(), endif(), and similar block
termination commands to have arguments matching the command starting the
block. This is no longer the preferred style.
Run the following shell code:
for c in else endif endforeach endfunction endmacro endwhile; do
echo 's/\b'"$c"'\(\s*\)(.\+)/'"$c"'\1()/'
done >convert.sed &&
git ls-files -z -- bootstrap '*.cmake' '*.cmake.in' '*CMakeLists.txt' |
egrep -z -v '^(Utilities/cm|Source/kwsys/)' |
egrep -z -v 'Tests/CMakeTests/While-Endwhile-' |
xargs -0 sed -i -f convert.sed &&
rm convert.sed
Since commit c198730b (Detect Watcom compiler version with its id,
2011-12-07) the CMAKE_(C|CXX)_COMPILER_VERSION variables are set for the
Watcom compiler. Use these in Windows-wcl386.cmake to set the old
WATCOM1* version variables. This avoids using the old EXECUTE_PROCESS
command which failed due to extra quotes anyway.
Teach CMake to prefer the system default compiler automatically when no
compiler is specified. By default use "cc" for C, "CC" for C++, and
"f95" for Fortran. Load a new Platform/<os>-<lang>.cmake module to
allow each platform to specify for each language its system compiler
name(s) and/or exclude certain names.
Create Platform/(CYGWIN|Darwin|Linux|Windows)-CXX.cmake modules to
specify "c++" as the system C++ compiler name for these platforms. On
systems that use case-insensitive filesystems exclude C++ compiler names
that are distinguished from C compiler names only by case.
This will change the default compiler selection for existing build
scripts that do not specify a compiler when run on machines with
separate system and GNU compilers both installed in the PATH. We do not
make this change in default behavior lightly. However:
(1) If a given build really needs specific compilers one should specify
them explicitly e.g. by setting CC, CXX, and FC in the environment.
(2) The motivating case is to prefer the system Clang on newer OS X
systems over the older GNU compilers typically also installed. On
such systems the names "cc" and "c++" link to Clang. This is the
first platform known to CMake on which "c++" is not a GNU compiler.
The old behavior selected "gcc" for C and "c++" C++ and therefore
chooses GNU for C and Clang for C++ by default. The new behavior
selects GNU or Clang consistently for both languages on older or
newer OS X systems, respectively.
(3) Other than the motivating OS X case the conditions under which the
behavior changes do not tend to exist in default OS installations.
They typically occur only on non-GNU systems with manually-installed
GNU compilers.
(4) The consequences of the new behavior are not dire. At worst the
project fails to compile with the system compiler when it previously
worked with the non-system GNU compiler. Such failure is easy to
work around (see #1).
In short this change creates a more sensible default behavior everywhere
and fixes poor default behavior on a widely-used platform at the cost of
a modest change in behavior in less-common conditions.
4bb94c9 Ninja: sysconf() is declared in unistd.h
bb36759 Ninja: enable response file support on Mac (length 262144)
3a2c8e8 Ninja: disable work around when linking with mingw
3856e66 Ninja: error on missing rspfile_content
8c1e35c Ninja: remove some unused default arguments
7f647cf Ninja: also write link libraries to rsp file
The work around is only needed by older GCCs (only testet 4.4/4.7)
Ninja is very new so chances are high that there is also a new mingw.
Use slashes in link rsp file, because ar.exe can't handle \.
Among other flags this sets RPATH flags correctly so that CMake knows
how to treat CMAKE_PLATFORM_REQUIRED_RUNTIME_PATH for the ASM language.
This is the GNU compiler equivalent to commit a0bab7ae (Add ASM platform
information for XL compiler on AIX, 2011-03-02), made for XL.
bd34963 Refactor generation of shared library flags
55d7aa4 Add platform variable for flags specific to shared libraries
31d7a0f Add platform variables for position independent code flags
Store in new platform variables
CMAKE_${lang}_COMPILE_OPTIONS_PIC
CMAKE_${lang}_COMPILE_OPTIONS_PIE
flags for position independent code generation.
In almost all cases, this means duplication of the
CMAKE_SHARED_LIBRARY_${lang}_FLAGS for the _PIC case and using the
assumed pie equivalent for the _PIE case. Note that the GNU compiler
has supported -fPIE since 3.4 and that there is no -fPIC on GNU for
Windows or Cygwin.
There is a possibility that the _PIE variables are not correct.
However, as there is no backwards compatibility to be concerned about
(as the POSITION_INDEPENDENT_CODE property is not used anywhere yet),
the current state suffices.
The default for `CMAKE_FIND_FRAMEWORK`, defined in `Darwin.cmake` and
`Darwin-icc.cmake`, is now guarded so that it will not override command line
arguments passed by users.
Similarly for `CMAKE_FIND_APPBUNDLE`
Add a boolean target property NO_SONAME which may be used to disable
soname for the specified shared library or module even if the platform
supports it. This property should be useful for private shared
libraries or various plugins which live in private directories and have
not been designed to be found or loaded globally.
Replace references to <CMAKE_SHARED_LIBRARY_SONAME_${LANG}_FLAG> and
hard-coded -install_name flags with a conditional <SONAME_FLAG> which is
expanded to the value of the CMAKE_SHARED_LIBRARY_SONAME_${LANG}_FLAG
definition as long as soname supports is enabled for the target in
question. Keep expanding CMAKE_SHARED_LIBRARY_SONAME_${LANG}_FLAG in
rules in case third party projects still use it. Such projects would
not yet use NO_SONAME so the adjacent <TARGET_SONAME> will always be
expanded. Make <TARGET_INSTALLNAME_DIR> NO_SONAME aware as well. Since
-install_name is soname on OS X, this should not be a problem if this
variable is expanded only if soname is enabled.
The Ninja generator performs rule variable substitution only once
globally per rule to put its own placeholders. Final substitution is
performed by ninja at build time. Therefore we cannot conditionally
replace the soname placeholders on a per-target basis. Rather than
omitting $SONAME from rules.ninja, simply do not write its contents for
targets which have NO_SONAME. Since 3 variables are affected by
NO_SONAME ($SONAME, $SONAME_FLAG, $INSTALLNAME_DIR), set them only if
soname is enabled.
Use of the deprecated option with Intel 2011 produces
icl: command line remark #10010: option '/GX' is deprecated and will
be removed in a future release. See '/help deprecated'
so use its replacement option which has been supported for several
older versions anyway.
The parent commit added a search path relative to OSX_DEVELOPER_ROOT.
But with Xcode 4.3 the nested Applications folder is in a different
relative location compared to that root. This commit makes the intent
of the previous commit work with older and newer Xcode directory layouts.
Furthermore, it only adds paths that exist to the search path.
Since commit 4693cf84 (Xcode: Detect new default locations of Xcode 4.3
bits and pieces) Darwin.cmake detects the developer application
directory instead of hard-coding /Developer. Replace the hard-coded
path in CMAKE_SYSTEM_APPBUNDLE_PATH using the computed result.
0f4dfa6 CPack: Use real path to PackageMaker to find its version file (#12621)
4693cf8 Xcode: Detect new default locations of Xcode 4.3 bits and pieces (#12621)
8485208 Ninja: shell escape $(CMAKE_SOURCE_DIR) and $(CMAKE_BINARY_DIR)
df84767 Ninja: add support for OBJECT_OUTPUTS, fix PrecompiledHeader test case
48eb7fc Ninja: Avoid using 'this' in member initializers
bba37dd Ninja: Fix for PDB files with spaces in the path.
ac800f4 Ninja: Constify use of cmCustomCommand
9a0d5a8 Ninja: add /DEF: flag to linker call
d40eebd Ninja: Add a cache option CMAKE_ENABLE_NINJA to enable the ninja generator.
8c63433 Ninja: Add friend struct so it can access the private ConvertToNinjaPath.
dbe3dce Ninja: add .def file support
f1bb08f Ninja: ensure the output dir exists at compile time
7a6b5f4 Ninja: Remove an unnecessary variable
80ff210 Ninja: Use cmSystemTools::ExpandListArgument to split compile/link commands
d2731a3 Ninja: Add a missed license header
eabc9b0 Ninja: CMake: Adapt Ninja generator for per-target include dirs
bada88e Merge branch 'target-include-directories' into ninja-generator
54bd175 Ninja: windows msvc: create for each target a .pdb file
...
Xcode 4.3 installs into "/Applications" by default, from the Mac App Store.
Also, the paths to the available SDKs changed: they are now within the
Xcode.app bundle.
PackageMaker is installed as a separate program, and may be installed
anywhere. It is not installed with Xcode 4.3 by default anymore.
Download the "Auxiliary Tools for Xcode" to get PackageMaker.
Put PackageMaker inside the Xcode.app bundle, in its nested Applications
folder, or put it alongside Xcode in "/Applications" and CMake will find
it.
Update references to "find" paths: add new possible locations for finding
Xcode.app and PackageMaker.app. Prefer the most recent version's locations
first, but keep the old locations as fallback search paths, too.
Thanks to all the contributors who provided and tested out various patches
for fixing this issue. Especially, but by no means limited to:
Francisco Requena Espí, Jamie Kirkpatrick and drfrogsplat.
The Borland compiler was re-branded as CodeGear during 2007-2009 and
since 2009 is the Embarcadero compiler. They offer predefined macros:
http://docwiki.embarcadero.com/RADStudio/en/Predefined_Macros
and distinguish themselves by __CODEGEARC__ and __CODEGEARC_VERSION__.
Version 6.30 (C++Builder XE) changed the meaning of some flags:
http://docwiki.embarcadero.com/RADStudio/en/C%2B%2B_Compiler_Option_Changes_for_XE
Teach Embarcadero compiler information files to generate build rules
with flags matching the compiler version. Leave the flags unchanged
for old Borland versions. Always set the BORLAND toolchain indicator
for compatibility with existing projects that test it. Also set the
EMBARCADERO indicator for newer toolchains.
The Borland compiler is now the Embarcadero compiler. Rename the shared
platform information file to reflect this. This does not change the
interface, as old versions are still "Borland", but will allow new
versions released by Embarcadero to be supported cleanly.
Fix typo introduced in commit 66a08c10 (more uniform approach to enable
language, 2004-08-26). The optimization option should be /O2 for
Release configurations and /O1 for MinSizeRel.
Suggested-by: He Yuqi <yuqi.he@gmail.com>
The default OS X 10.4 linker incorrectly searches for dependencies of
linked shared libraries only under the -isysroot location. It fails to
find dependencies of linked shared libraries in cases such as the
ExportImport test. It produces errors like:
/usr/libexec/gcc/i686-apple-darwin8/4.0.1/ld: warning can't open dynamic library:
libtestLib3Imp.dylib
referenced from: /.../ExportImport/Root/lib/libtestLib3lib.1.2.dylib
(checking for undefined symbols may be affected) (No such file or directory, errno = 2)
/usr/libexec/gcc/i686-apple-darwin8/4.0.1/ld: Undefined symbols: _testLib3Imp
referenced from libtestLib3lib expected to be defined in
libtestLib3Imp.dylib
or with CMAKE_SKIP_RPATH off to enable install_name in the Export side:
/usr/libexec/gcc/i686-apple-darwin8/4.0.1/ld: warning can't open dynamic library:
/Developer/SDKs/MacOSX10.4u.sdk/.../ExportImport/Export/impl/libtestLib3Imp.dylib
referenced from: /.../ExportImport/Export/libtestLib3lib.1.2.dylib
(checking for undefined symbols may be affected) (No such file or directory, errno = 2)
/usr/libexec/gcc/i686-apple-darwin8/4.0.1/ld: Undefined symbols:_testLib3Imp
referenced from libtestLib3lib expected to be defined in
/.../ExportImport/Export/impl/libtestLib3Imp.dylib
Note how "/Developer/SDKs/MacOSX10.4u.sdk" is prepended to the dependent
library path.
Commit 2cff26fa (Support linking to shared libs with dependent libs,
2008-01-31) and commit 82fcaebe (Pass dependent library search path to
linker on some platforms, 2008-02-01) worked around the problem by
defining platform variable CMAKE_LINK_DEPENDENT_LIBRARY_FILES. It tells
CMake to link to dependent libraries explicitly by their path thus
telling the linker where to find them.
Unfortunately the workaround had the side effect of linking dependent
libraries and defeats most benefits of LINK_INTERFACE_LIBRARIES.
Fortunately OS X 10.5 and above do not need to find transitive
dependencies at all so we can avoid the workaround on Modern OS X.
Previously we linked C, Fortran, and ASM shared libraries compiled with
the HP compiler using a direct invocation of the linker (ld). This
behavior was left historically from support for an ancient HP C compiler
that did not know how to create shared libraries. Fortran shared
libraries need to be linked with the compiler to get the language
runtime library dependencies as is already done for C++.
Update the HP-UX-HP* platform information to use the compiler front end
when linking shared libraries. This works on modern HP tools and
produces correct behavior. If there is a need to support older tools
again we can add a special case for them.
ae62a1c Test CMAKE_GNUtoMS option in ExportImport on MinGW and MSys
afb00fe Add CMAKE_GNUtoMS option to convert GNU .dll.a to MS .lib
61e8629 Factor makefile generator link rule lookup into helper function
a603250 Load platform files that need to know the ABI when possible
ecd8414 Fortran: Detect pointer size in gfortran on MinGW
Teach the Windows-GNU.cmake platform file to look for Visual Studio
tools matching the target ABI. Add an extra step to the link command
for shared libraries and executables that export symbols and on which a
new GNUtoMS property is set (initialized by the CMAKE_GNUtoMS option).
Tell the GNU linker to output a module definition (.def) file listing
exported symbols in addition to the GNU-format import library (.dll.a).
Pass the .def file to the MS "lib" tool to construct a MS-format DLL
import library (.lib).
Teach the install(TARGETS) command to install the MS import library next
to the GNU one. Teach the install(EXPORT) and export() command to set
the IMPORTED_IMPLIB property pointing at the import library to use the
import library matching the tools in the importing project.
Use __SIZEOF_POINTER__ which the GNU Fortran compiler defines at least
on 64-bit MinGW. Assume default size 4 on MinGW if gfortran does not
define the size.
Use the "-shared" option to link shared libraries. The compiler does
not support "-Wl," or "-rpath" but does know how to pass "-soname"
through to the linker.
- Build wasn't properly using -soname linker args, so installed libraries
could depend on relative paths from the build directory.
- Consolidated GNU linker args to one place in the BlueGeneP-base platform
file, since ld is used by both XL and GNU toolchains on BlueGene.
Commit 6d434ee6 (Split XL compiler information files, 2009-09-30)
added Platform/AIX-(XL|VisualAge)-(C|CXX|Fortran).cmake modules
to support the old and new compiler branding for all languages.
Add the "AIX-VisualAge-Fortran" combination that was left out
accidentally.
Allows wlib to generate proper exports if two routines have
the same spelling, but different case (like Scale and scale).
Thanks to J Decker for the patch.
* Fix linux CMAKE_LIBRARY_ARCHITECTURE_REGEX to support armel-linux-gnueabi.
* Add CMAKE_LIBRARY_ARCHITECTURE_REGEX on kFreeBSD.
* Add CMAKE_LIBRARY_ARCHITECTURE_REGEX on GNU (Hurd).
Also regex is improved to support quadlets. Even if I have not seen this
in the wild yet, reportedly they are possible.
Implement support for multiarch as specified here:
http://wiki.debian.org/Multiarchhttps://wiki.ubuntu.com/MultiarchSpec
Detect the <arch> part of <prefix>/lib/<arch> from the implicit library
search path from each compiler to set CMAKE_<lang>_LIBRARY_ARCHITECTURE.
Define CMAKE_LIBRARY_ARCHITECTURE using one of these values (they should
all be the same). Teach the find_library and find_package commands to
search <prefix>/lib/<arch> whenever they would search <prefix>/lib.
8bd3e51 Absoft: Enable FortranCInterface check in Fortran test
d7b376b Absoft: Detect implicit link libraries on Linux and Mac
ac5b999 Add Absoft Fortran compiler id and basic flags
Use the "-X -v" flag to the Absoft front-end to pass "-v" to the gcc it
invokes under the hood. Teach CMakeParseImplicitLinkInfo to exclude
linker version lines from consideration as link lines. Fix parsing of
Sun's linker search path option "-Y..." to avoid conflict with the Mac
linker option "-Y<num>".
86cb17b Pass include directories with response files to GNU on Windows
9a0b9bc Optionally pass include directories with response files
6e8a67f Generate target-wide flags before individual build rules
d099546 Factor old-style -D flags out from -I flag generation
The GNU 4.x toolchain on MinGW (and therefore MSYS) allows compiler
options to be passed via response files. Use this to pass include
directory -I options. This allows the include file search path to be
very long despite shell and mingw32-make command line length limits.
Move HP flags out of Platform/HP-UX.cmake into platform-specific
compiler information files "Platform/HP-UX-HP-<lang>.cmake". Factor
common values into "Platform/HP-UX-HP.cmake" and load it from the
per-language files.
Move RPATH flags out of Platform/AIX.cmake into platform-specific
compiler information files Platform/AIX-XL and Platform/AIX-GNU.
The flags need to be set for each compiler of each language.
Commit 6a61a8a5 (Honor module .def files with MinGW tools, 2011-02-21)
set CMAKE_LINK_DEF_FILE_FLAG to "-Wl," to enable passing .def files to
the linker on MinGW. However, older GNU tools in the MSYS shell do not
know how to translate "-Wl,/c/..." to "c:/..." and complain that the
file does not exist. Instead set the flag to just "" which tells CMake
it can pass the file through the front-end with no special flag.
Since commit 024d05ad (Fix use of module .def files for MS tools,
2009-09-29) module .def files work for any platform that sets
CMAKE_LINK_DEF_FILE_FLAG correctly. Set it in the Windows-GNU platform
information file to enable support with MinGW tools. Also enable the
test added by commit 0db2c850 (Test use of module .def files for MS
tools, 2009-09-29) for MinGW and MSYS generators.
971692c Build enable_language command during bootstrap
960ace1 Add testing for windows resources for mingw/msys/cygwin and remove for watcom.
060d6e8 Add support for windres to cygwin.
b2f308c Add support for windows resources with mingw/msys.
The Mac linker defines flag -headerpad_max_install_names but not all
front-ends recognize the flag and pass it through (many did in the past,
such as the Apple port of GCC). Use the -Wl, option prefix to tell
front-ends to pass it through without trying to interpret it.
One of Cygwin's goals is to build projects using the POSIX API with no
Windows awareness. Many CMake-built projects have been written to test
for UNIX and WIN32 but not CYGWIN. The preferred behavior under Cygwin
in such projects is to take the UNIX path but not the WIN32 path.
Unfortunately this change is BACKWARDS INCOMPATIBLE for Cygwin-aware
CMake projects! Some projects that previously built under Cygwin and
are Cygwin-aware when they test for WIN32 may now behave differently.
Eventually these projects will need to be updated, but to help users
build them in the meantime we print a warning about the change in
behavior. Furthermore, one may set CMAKE_LEGACY_CYGWIN_WIN32 to request
old behavior during the transition.
Normally we avoid backwards incompatible changes, but we make an
exception in this case for a few reasons:
(1) This behavior is preferred by Cygwin's design goals.
(2) A warning provides a clear path forward for everyone who may see
incompatible behavior, and CMAKE_LEGACY_CYGWIN_WIN32 provides a
compatibility option. The warning and compatibility option both
disappear when the minimum required version of CMake in a project is
sufficiently new, so this issue will simply go away over time as
projects are updated to account for the change.
(3) The fixes required to update projects are fairly insignificant.
Furthermore, the Cygwin distribution has no releases itself so project
versions that predate said fixes tend to be difficult to build anyway.
(4) This change enables many CMake-built projects that did not
previously build under Cygwin to work out-of-the-box. From bug #10122:
"I have built over 120 different source packages with (my patched)
CMake, including most of KDE4, and have found that NOT defining
WIN32 on Cygwin is much more accurate." -- Yaakov Selkowitz
A fully compatible change would require patches on top of these project
releases for Cygwin even though they otherwise need not be aware of it.
(5) Yaakov has been maintaining a fork of CMake with this change for the
Cygwin Ports distribution. It works well in practice. By accepting the
change in upstream CMake we avoid confusion between the versions.
CMake itself builds without WIN32 defined on Cygwin. Simply disable
CMAKE_LEGACY_CYGWIN_WIN32 explicitly in our own CMakeLists.txt file.
09d1c10 FortranCInterface: Recognize NAG Fortran module symbols
af2ad90 Add NAG Fortran compiler information files
24cc3d4 Recognize the NAG Fortran compiler
83892c4 Allow Fortran platform files to set empty values
fe3f878 Detect object files in implicit link information
Since commit aff31479 (Modernize GNU compiler info on Windows,
2009-12-02) the file Modules/Platform/Windows-g++.cmake has been unused.
It just includes the non-existent Modules/Platform/Windows-gcc.cmake so
remove it outright.
This moves Intel compiler info on Windows into new-style modules
Platform/Windows-Intel-<lang>.cmake
using language-independent helper module
Platform/Windows-Intel.cmake
to define macros consolidating the information.
Commit 4430bccc (Change the way 32/64 bit compiles are detected with
MSVC and intel, 2009-11-19) added detection of the target processor to C
and CXX language builds with MS and Intel tools. Do the same for Intel
Fortran for Windows (ifort). Use /machine:<arch> to link executables.
On Linux the NAG Fortran compiler uses gcc under the hood to link. Use
"-Wl,-v" to pass "-v" to the underlying gcc compiler to get verbose link
output. Detect the NAG Fortran directory (using -dryrun) and then honor
object files in the directory referenced in the implicit link line.
Pass real linker options with "-Wl,-Xlinker,". The -Wl, gets through
the NAG front-end and the -Xlinker gets through the gcc front-end.
The Mac linker defines -headerpad_max_install_names and the GCC
front-end passes this flag through. The PGI compiler does not know
about this flag, so we must use -Wl,-headerpad_max_install_names to pass
it to the linker instead.