two-step priority (None or Prefered)
Current order: ASM 0, C 10, Fortran 20, CXX 30, Java 40
This is the same order as automake choses:
http://www.gnu.org/software/automake/manual/html_node/How-the-Linker-is-Chosen.html
This change should be backward compatible:
if there is a project using fortran and CXX, they had to set the
LINKER_LANGUAGE explicitely, otherwise cmake complained (but still generated
the project files). Explicitely setting the linker language still overrides
automatic detection.
If somebody has a custom language for cmake and the PREFERENCE starts with
"P", its changed to 100, which gives it preference over all other languages
(except the other custom languages which have also "Prefered"). "None" is
converted to 0.
Alex
compiling an executable (amd thus cannot build the compiler-id program)
easier by providing CMAKE_FORCE_XXX() macros which force cmake to use the
given compilers anyway
Alex
CMAKE_SYSTEM_AND_C_COMPILER_INFO_FILE, CMAKE_SYSTEM_AND_CXX_COMPILER_INFO_FILE,
CMAKE_SYSTEM_AND_C_COMPILER_AND_PROCESSOR_INFO_FILE and CMAKE_SYSTEM_AND_CXX_COMPILER_AND_PROCESSOR_INFO_FILE
Instead of presetting these variables to arbitrary filenames, users should
set up CMAKE_SYSTEM_NAME and the compilers correctly and also create a
Platform/ directory so these files will all follow the official cmake style,
which should make it easier to understand and debug project which have their
own platform/toolchain support files.
-remove support for a suffix to MS crosscompilers, since this is not (yet)
supported by cmake and might confuse users
Alex
CMakeDetermineSystem.cmake, since CMAKE_SYSTEM_NAME might already be preset
when using cmake for cross compiling
use type STRING instead of FILEPATH since otherwise a strange filename was
generated
Alex
second part copies the values from the cmake variables into internal maps.
So this can now be done after the compiler-specific information has been
loaded, which can now overwrite more settings.
Alex
Tested with various gcc, XCode, MSVC7, sdcc
For OSX when doing TRY_COMPILE() CMAKE_OSX_ARCHITECTURES is used, if there are different results an error is generated. CMAKE_OSX_ARCHITECTURES can be overwritten for the TRY_COMPILES with CMAKE_TRY_COMPILE_OSX_ARCHITECTURES.
Alex
really work by reverting X11_LIBRARIES back to the old version
-add some more X11_xxx_FOUND variables
-reformat comments at the top
-always use IF(INCLUDE_DIR and LIB) for setting FOUND to TRUE
Alex
creates two cache variables, one for the RUN_RESULT, one for the RUN_OUTPUT
(if required), which can be set or preset by the user. It has now also two
new arguments: RUN_OUTPUT_VARIABLE and COMPILE_OUTPUT_VARIABLE (the old
OUTPUT_VARIABLE merges both), so if only COMPILE_OUTPUT_VARIABLE is used the
run time output of the TRY_RUN is unused and the user doesn't have to care
about the output when crosscompiling. This is now used in FindThreads.cmake,
CheckC/CXXSourceRuns.cmake and TestBigEndian.cmake, which used the output
only for the logfile (compile output is still there). Test/TryCompile/ now
also tests the behaviour of OUTPUT_VARIABLE, RUN_OUTPUT_VARIABLE and
COMPILE_OUTPUT_VARIABLE.
Alex
conversion of hex and srec files to binary.
Without this automatic conversion, everywhere where a compiled file is parsed for strings the
a file(HEX2BIN somefile binfile) command has to be added otherwise it will
not work for these compilers. I tried this with DetermineCompiler and
CheckTypeSize and nobody will do this except the users who work with such
compilers. For them it will break if they don't add this conversion command
in all these places.
If FILE(STRINGS) is used with a text file, it
will in most cases still work as expected, since it will only convert hex
and srec files. If a user actually wants to get text out of hex files, he
knows what he's doing and will see the hint in the documentation.
Anyway, it should work without having to create a temporary file, will work
on this later.
Alex
CMAKE_SOURCE_DIR can't be used there
ENH: modify CMakeCCompilerId.c and .h so that sdcc can compile them. As they
were the preprocessor produced:
9 "test.c"
static char const info_compiler[] = "INFO:compiler["
# 40 "test.c"
""
"]";
and the mixing of the preprocessing directives and the string constants
didn't work.
Alex
-add a RESULT_VARIABLE to INCLUDE()
-add CMAKE_TOOLCHAIN_FILE for specifiying your (potentially crosscompiling) toolchain
-have TRY_RUN() complain if you try to use it in crosscompiling mode (which were compiled but cannot run on this system)
-use CMAKE_EXECUTABLE_SUFFIX in TRY_RUN(), probably TRY_RUN won't be able to
run the executables if they have a different suffix because they are
probably crosscompiled, but nevertheless it should be able to find them
-make several cmake variables presettable by the user: CMAKE_C/CXX_COMPILER, CMAKE_C/CXX_OUTPUT_EXTENSION, CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_INFO_FILE
-support prefix for GNU toolchains (arm-elf-gcc, arm-elf-ar, arm-elf-strip etc.)
-move ranlib on OSX from the file command to a command in executed in cmake_install.cmake
-add support for stripping during install in cmake_install.cmake
-split out cl.cmake from Windows-cl.cmake, first (very incomplete) step to support MS crosscompiling tools
-remove stdio.h from the simple C program which checks if the compiler works, since this may not exist for some embedded platforms
-create a new CMakeFindBinUtils.cmake which collects the search fro ar, ranlib, strip, ld, link, install_name_tool and other tools like these
-add support for CMAKE_FIND_ROOT_PATH for all FIND_XXX commands, which is a
list of directories which will be prepended to all search directories, right
now as a cmake variable, turning it into a global cmake property may need
some more work
-remove cmTestTestHandler::TryExecutable(), it's unused
-split cmFileCommand::HandleInstall() into slightly smaller functions
Alex