As we're iterating over IMPORTED targets now, handle them in
the loop body. The existing behavior is harmless because generally
nothing is done anyway for IMPORTED targets in these code paths,
because they do not have sources for example.
As an INTERFACE_LIBRARY has no direct link dependencies, we can
short-circuit in cmGeneratorExpressionEvaluator and
in cmGlobalGenerator::CheckLocalGenerators.
As they do not generate any output directly, any generate- or install-
related code acn also be short-circuited. Many of the local generators
already do this.
Because only INTERFACE related properties make sense on INTERFACE_LIBRARY
targets, avoid setting other properties, for example via defaults.
This variable can be useful in cross-compiling contexts where the
sysroot is read-only or where the sysroot should otherwise remain
pristine.
If the new CMAKE_STAGING_PREFIX variable is set, it is used instead
of CMAKE_INSTALL_PREFIX when generating the installation rules in
cmake_install.cmake.
This way, the CMAKE_INSTALL_PREFIX variable
always refers to the installation prefix on the target device, regardless
of whether host==target.
If any -rpath paths passed to the linker contain the CMAKE_STAGING_PREFIX,
the matching path fragments are replaced with the CMAKE_INSTALL_PREFIX.
Matching paths in the -rpath-link are not transformed.
The cross-prefix usr-move workaround is assumed not to require extension
regarding CMAKE_STAGING_PREFIX. The staging area is a single prefix, so
there is no scope for cross-prefix symlinks. The CMAKE_INSTALL_PREFIX
is still used to determine the workaround path, and that variable
remains the relevant one even if CMAKE_STAGING_PREFIX is used. If the
generated export files are deployed to the target, the workaround
will still be in place, and still be employed if required.
As CMAKE_ROOT_FIND_PATH can be a list, a new CMAKE_SYSROOT is
introduced, which is never a list.
The contents of this variable is passed to supporting compilers
as --sysroot. It is also accounted for when processing implicit
link directories reported by the compiler, and when generating
RPATH information.
Clang can compile code, but uses the gcc tools for other tasks such
as linking. The -gcc-toolchain option can be used for that, but
generalize so that other compilers can be treated the same.
If such a location is specified, use it as a hint for finding
the binutils executables.
For clang, this allows passing -target <triple> to the compiler, and
for qcc, -V<arch> using toolchain files containing something like
set(triple arm-linux-gnueabihf)
set(CMAKE_C_COMPILER "/usr/bin/clang")
set(CMAKE_C_COMPILER_TARGET ${triple})
set(CMAKE_CXX_COMPILER "/usr/bin/clang++")
set(CMAKE_CXX_COMPILER_TARGET ${triple})
or
set(arch gcc_ntoarmv7le)
set(CMAKE_C_COMPILER /opt/qnx650/host/linux/x86/usr/bin/qcc)
set(CMAKE_C_COMPILER_TARGET ${arch})
set(CMAKE_CXX_COMPILER /opt/qnx650/host/linux/x86/usr/bin/QCC)
set(CMAKE_CXX_COMPILER_TARGET ${arch})
Both clang and qcc are inherently cross compiler( driver)s.
When cross-compiling with clang, use the CMAKE_${lang}_COMPILER_TARGET
as the _CMAKE_TOOLCHAIN_PREFIX to find the appropriate binutils.
When cross-compiling with QNX qcc, use the CMAKE_${lang}_COMPILER_TARGET
to set the appropriate _CMAKE_TOOLCHAIN_PREFIX.
Drop all behavior activated by setting CMAKE_BACKWARDS_COMPATIBILITY to
a value lower than 2.4, and generate an error when projects or the user
attempt to do so. In the error suggest using a CMake 2.8.x release.
Teach cmake_minimum_required to warn about projects that do not require
at least CMake 2.4. They are not supported by CMake >= 3.0.
Replace the documentation of CMAKE_BACKWARDS_COMPATIBILITY with a
reference to policy CMP0001.
Compilers for languages other than C and C++ on OS X may not understand
the -F framework search flag. Create a new platform information
variable CMAKE_<LANG>_FRAMEWORK_SEARCH_FLAG to hold the flag, and set it
for C and CXX lanugages in the Platform/Darwin module.
Reported-by: Vittorio Giovara <vittorio.giovara@gmail.com>
54ef2be Haiku: Include files cleanup in cmCTest
38d5555 Haiku: Remove outdated preprocessor checks
1dc61f8 Haiku: Remove use of B_COMMON_DIRECTORY
7ebc1cb Haiku: Several fixes to platform module
This target type only contains INTERFACE_* properties, so it can be
used as a structural node. The target-specific commands enforce
that they may only be used with the INTERFACE keyword when used
with INTERFACE_LIBRARY targets. The old-style target properties
matching LINK_INTERFACE_LIBRARIES_<CONFIG> are always ignored for
this target type.
The name of the INTERFACE_LIBRARY must match a validity generator
expression. The validity is similar to that of an ALIAS target,
but with the additional restriction that it may not contain
double colons. Double colons will carry the meaning of IMPORTED
or ALIAS targets in CMake 2.8.13.
An ALIAS target may be created for an INTERFACE library.
At this point it can not be exported and does not appear in the
buildsystem and project files are not created for them. That may
be added as a feature in a later commit.
The generators need some changes to handle the INTERFACE_LIBRARY
targets returned by cmComputeLinkInterface::GetItems. The Ninja
generator does not use that API, so it doesn't require changes
related to that.
The commits 9db31162 (Remove CMake-language block-end command
arguments, 2012-08-13) and 77543bde (Convert CMake-language
commands to lower case, 2012-08-13) changed most cmake code
to use lowercase commands and no parameters in termination
commands. However, those changes excluded cmake code generated
in c++ by cmake.
Make a similar style change to code generated by cmake.
9cf3547 Add the INTERFACE_SYSTEM_INCLUDE_DIRECTORIES target property.
1925cff Add a SYSTEM parameter to target_include_directories (#14180)
286f227 Extend the cmTargetPropCommandBase interface property handling.
83498d4 Store system include directories in the cmTarget.
f1fcbe3 Add Target API to determine if an include is a system include.
2679a34 Remove unused variable.
Drop the "vsProjectFile" argument from cmTarget::TraceDependencies. It
appears to be the modern equivalent to a hunk added in commit ba68f771
(...added new custom command support, 2003-06-03):
+ name = libName;
+ name += ".dsp.cmake";
+ srcFilesToProcess.push(name);
but was broken by refactoring at some point. The current behavior tries
to trace dependencies on a source file named the same as a target, which
makes no sense. Furthermore, in code of the form
add_executable(foo foo.c)
add_custom_command(OUTPUT "${somewhere}/foo" ... DEPENDS foo)
the "vsProjectFile" value "foo" matches source "${somewhere}/foo.rule"
generated to hold the custom command and causes the command to be added
to the "foo" target incorrectly.
Simply drop the incorrect source file trace and supporting logic.
d7dd010 Add target property debugging for COMPILE_DEFINITIONS
1841215 Refactor cmTarget::GetCompileDefinitions to use an out-vector, not a string.
afc9243 Add an overload of cmIDEOptions::AddDefines taking a vector of strings.
d95651e Overload cmLocalGenerator::AppendDefines to add a list.
Replace the cmLocalGenerator GetCompileOptions method with an
AddCompileOptions method since all call sites of the former simply
append the result to a flags string anyway.
Add a "lang" argument to AddCompileOptions and move the
CMAKE_<LANG>_FLAGS_REGEX filter into it. Move the call sites in each
generator to a location that has both the language and configuration
available. In the Makefile generator this also moves the flags from
build.make to flags.make where they belong.
Factor appending of individual flags out into an AppendFlagEscape method
in cmLocalGenerator and teach it to use EscapeForShell. Update all
COMPILE_OPTIONS handling to use AppendFlagEscape.
Override the method in the Xcode generator to use its custom escape
implementation.
Teach the CompileOptions test to add an option that requires escaping
everywhere instead of just with the GNU tools.
For clang, this allows passing -target <triple> to the compiler, and
for qcc, -V<arch> using toolchain files containing something like
set(triple arm-linux-gnueabihf)
set(CMAKE_C_COMPILER "/usr/bin/clang")
set(CMAKE_C_COMPILER_TARGET ${triple})
set(CMAKE_CXX_COMPILER "/usr/bin/clang++")
set(CMAKE_CXX_COMPILER_TARGET ${triple})
or
set(arch gcc_ntoarmv7le)
set(CMAKE_C_COMPILER /opt/qnx650/host/linux/x86/usr/bin/qcc)
set(CMAKE_C_COMPILER_TARGET ${arch})
set(CMAKE_CXX_COMPILER /opt/qnx650/host/linux/x86/usr/bin/QCC)
set(CMAKE_CXX_COMPILER_TARGET ${arch})
Both clang and qcc are inherently cross compiler( driver)s.
As CMAKE_ROOT_FIND_PATH can be a list, a new CMAKE_SYSROOT is
introduced, which is never a list.
The contents of this variable is passed to supporting compilers
as --sysroot. It is also accounted for when processing implicit
link directories reported by the compiler, and when generating
RPATH information.
This corresponds to the g++ and clang++
option -fvisibility-inlines-hidden on linux. On Windows with MinGW,
this corresponds to -fno-keep-inline-dllexport. That option is
not supported by clang currently.
This is initialized by CMAKE_<LANG>_VISIBILITY_PRESET. The target
property is used as the operand to the -fvisibility= compile option
with GNU compilers and clang.
Currently it only adds the contents of the COMPILE_FLAGS target
property, but it can be extended to handle a new COMPILE_OPTIONS
generator expression enabled property.