The commit "Fix get_filename_component ABSOLUTE mode" broke the code
get_filename_component(cwd . ABSOLUTE)
because CTest scripts did not make cmMakefile::GetCurrentDirectory()
available. This commit fixes the problem by setting the proper
information on CTest script instances of cmMakefile.
This also makes CMAKE_CURRENT_SOURCE_DIR and CMAKE_CURRENT_BINARY_DIR
available to CTest scripts. They are set to the working directory at
script startup.
CMake 2.4 generates old-style cmake_install.cmake code including calls
to the file(INSTALL) command with the COMPONENTS argument. We need to
set CMAKE_INSTALL_SELF_2_4 for the whole install tree to prevent the
command from complaining in this special case. Previously this was
needed only in the QtDialog directory, but now it is needed in the
entire tree.
The commit "Consider link dependencies for link language" taught CMake
to propagate linker language preference from languages compiled into
libraries linked by a target. It turns out this should only be done for
some languages, such as C++, because normally the language of the
program entry point (main) should be used.
We introduce variable CMAKE_<LANG>_LINKER_PREFERENCE_PROPAGATES to tell
CMake whether a language should propagate its linker preference across
targets. Currently it is true only for C++.
This factors the decision logic out of cmTarget::ComputeLinkClosure into
dedicated class cmTargetSelectLinker. We replace several local
variables with a single object instance, and organize code into methods.
All global generator CreateLocalGenerator methods automatically
initialize the local generator instances with SetGlobalGenerator. In
several places we were calling SetGlobalGenerator again after receiving
the return value from CreateLocalGenerator. The double-initializations
leaked the resources allocated by the first call to SetGlobalGenerator.
This fix removes the unnecessary calls.
We list implicit link items of languages linked into a target but filter
them by the implicit libraries known to be passed by the main linker
language. Implicit link flags like "-z..." should not be filtered out
because they are not libraries.
In cmComputeLinkInformation we recognize link options that look like
library file names, but pass flags starting in '-' through untouched.
This fixes the ordering of the check to recognize '-' flags first in
case the rest of the option looks like a library file name, as in the
case of "-l:libfoo.a".
In cmComputeLinkInformation we construct regular expressions to
recognize library file names. This fixes the expressions to not allow a
colon (':') in the file name so that "-l:libfoo.a" is left alone.
Some AIX/gcc version combinations the <cstdio> header breaks when large
file support is enabled. See this GCC issue for details:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=20366
We work around the problem by enhancing the configuration check for
large file support to include <cstdio> when available. This will cause
LFS to be disabled when the above problem occurs.
This adds implicit libraries and search directories for languages linked
into a target other than the linker language to its link line. For
example, when linking an executable containing both C++ and Fortran code
the C++ linker is used but we need to add the Fortran libraries.
The variables
CMAKE_<LANG>_IMPLICIT_LINK_LIBRARIES
CMAKE_<LANG>_IMPLICIT_LINK_DIRECTORIES
contain the implicit libraries and directories for each language.
Entries for the linker language are known to be implicit in the
generated link line. Entries for other languages that do not appear in
the known implicit set are listed explicitly at the end of the link
line.
The "Keep only FinalPass commands in memory" commit caused instances of
this command to be deleted after the InitialPass. Even though the
variable_watch command does not have a final pass, it does need to stay
alive because it owns the callback information.
In cmMakefile we save all invoked commands so that FinalPass can be
called on them later. Most commands have no final pass, so we should
keep only the few that do.
This teaches CMake to detect implicit link information for C, C++, and
Fortran compilers. We detect the implicit linker search directories and
implicit linker options for UNIX-like environments using verbose output
from compiler front-ends. We store results in new variables called
CMAKE_<LANG>_IMPLICIT_LINK_LIBRARIES
CMAKE_<LANG>_IMPLICIT_LINK_DIRECTORIES
The implicit libraries can contain linker flags as well as library
names.
This teaches the command to recognize full windows paths when built on
UNIX. CollapseFullPath knows when the input path is relative better
than FileIsFullPath because the latter is only meant for paths from the
host platform.
Previously each new variable scope (subdirectory or function call) in
the CMake language created a complete copy of the key->value definition
map. This avoids the copy using transitive lookups up the scope stack.
Results of queries answered by parents are stored locally to maintain
locality of reference.
The class cmDefinitions replaces cmMakefile::DefinitionsMap, and is
aware of its enclosing scope. Each scope stores only the definitions
set (or unset!) inside it relative to the enclosing scope.
Generated makefiles for try-compile projects should never use color
output. On MSYS the color escapes end up in the try-compile output text
because there is no way to identify whether the output is going to a
color-capable terminal. Instead we should just always skip color for
try-compile projects.
This factors code out of cmOrderDirectories::CollectOriginalDirectories
into cmOrderDirectories::AddOriginalDirectories. Later a new call will
be added, and this is more readable anyway.
Add System_Parse_CommandForUnix to the KWSys System interface as a
utility to parse a unix-style command line. Move the existing
implementation out of ProcessUNIX. Add a flags argument reserved for
future use in providing additional behavior.
cmCTestScriptHandler, but have it load the new script CTestScriptMode.cmake
-> that makes it more flexible, also add a simple test that the system name
has been determined correctly
Alex
Now that languages are part of the link interface of a target we need to
export/import the information. A new IMPORTED_LINK_INTERFACE_LANGUAGES
property and per-config IMPORTED_LINK_INTERFACE_LANGUAGES_<CONFIG>
property specify the information for imported targets. The export() and
install(EXPORT) commands automatically set the properties.
Xcode does not seem to support direct requests for using the linker for
a particular language. It always infers the linker using the languages
in the source files. When no user source files compile with target's
linker language we add one to help Xcode pick the linker.
A typical use case is when a C executable links to a C++ archive. The
executable has no C++ source files but we need to use the C++ linker.
This teaches cmTarget to account for the languages compiled into link
dependencies when determining the linker language for its target.
We list the languages compiled into a static archive in its link
interface. Any target linking to it knows that the runtime libraries
for the static archive's languages must be available at link time. For
now this affects only the linker language selection, but later it will
allow CMake to automatically list the language runtime libraries.
This creates cmCTestHG to drive CTest Update handling on hg-based work
trees. Currently we always update to the head of the remote tracking
branch (hg pull), so the nightly start time is ignored for Nightly
builds. A later change will address this.
See issue #7879. Patch from Emmanuel Christophe. I modified the patch
slightly for code style, to finish up some parsing details, and to fix
the test.
This overload accepts a null-terminated string instead of requiring a
length. It is useful to pass some fake process output before and after
the real process output.
This adds another cast to avoid pointer conversion warnings.
Unfortunately C does not recognize implicit conversions that add
cv-qualifiers as well as C++ does.
The commit "Do not compute link language for LOCATION" was wrong. The
variables
CMAKE_STATIC_LIBRARY_PREFIX_Java
CMAKE_STATIC_LIBRARY_SUFFIX_Java
are used for building Java .jar files. This commit re-enables the
feature and documents the variables:
CMAKE_EXECUTABLE_SUFFIX_<LANG>
CMAKE_IMPORT_LIBRARY_PREFIX_<LANG>
CMAKE_IMPORT_LIBRARY_SUFFIX_<LANG>
CMAKE_SHARED_LIBRARY_PREFIX_<LANG>
CMAKE_SHARED_LIBRARY_SUFFIX_<LANG>
CMAKE_SHARED_MODULE_PREFIX_<LANG>
CMAKE_SHARED_MODULE_SUFFIX_<LANG>
CMAKE_STATIC_LIBRARY_PREFIX_<LANG>
CMAKE_STATIC_LIBRARY_SUFFIX_<LANG>
Instead of making separate, repetitive entries for the _<LANG> variable
documentation, we just mention the per-language name in the text of the
platform-wide variable documentation. Internally we keep undocumented
definitions of these properties to satisfy CMAKE_STRICT mode.
This passes the build configuration to most GetLinkerLanguage calls. In
the future the linker language will account for targets linked in each
configuration.
This simplifies computation of the lastKnownFileType attribute for
header files in Xcode projects. We now use a fixed mapping from
header file extension to attribute value. The value is just a hint to
the Xcode editor, so computing the target linker language is overkill.
The LOCATION property requires the full file name of a target to be
computed. Previously we computed the linker language for a target to
look up variables such as CMAKE_SHARED_LIBRARY_SUFFIX_<LANG>. This led
to locating all the source files immediately instead of delaying the
search to generation time. In the future even more computation will be
needed to get the linker language, so it is better to avoid it.
The _<LANG> versions of these variables are undocumented, not set in any
platform file we provide, and do not produce hits in google. This
change just removes the unused feature outright.
The new method centralizes loops that process raw OriginalLinkLibraries
to extract the link implementation (libraries linked into the target)
for each configuration. Results are computed on demand and then cached.
This simplifies link interface computation because the default case
trivially copies the link implementation.
These member structures are accessed only in the cmTarget implementation
so they do not need to be defined in the header. This cleanup also aids
Visual Studio 6 in compiling them.