- Add NAMELINK_ONLY and NAMELINK_SKIP to INSTALL command
- Options select a \"namelink\" mode
- cmInstallTargetGenerator selects files/link based on mode
- See bug #4419
- Created cmExportFileGenerator hierarchy to implement export file generation
- Installed exports use per-config import files loaded by a central one.
- Include soname of shared libraries in import information
- Renamed PREFIX to NAMESPACE in INSTALL(EXPORT) and EXPORT() commands
- Move addition of CMAKE_INSTALL_PREFIX to destinations to install generators
- Import files compute the installation prefix relative to their location when loaded
- Add mapping of importer configurations to importee configurations
- Rename IMPORT targets to IMPORTED targets to distinguish from windows import libraries
- Scope IMPORTED targets within directories to isolate them
- Place all properties created by import files in the IMPORTED namespace
- Document INSTALL(EXPORT) and EXPORT() commands.
- Document IMPORTED signature of add_executable and add_library
- Enable finding of imported targets in cmComputeLinkDepends
installing without having to link the target again -> can save a lot of time
chrpath is handled very similar to install_name_tool on the mac. If the
RPATH in the build tree file is to short, it is padded using the separator
character.
This is currently disabled by default, it can be enabled using the option
CMAKE_USE_CHRPATH. There are additional checks whether it is safe to enable
it. I will rework them and use FILE(READ) instead to detect whether the
binaries are actually ELF files.
chrpath is available here
http://www.tux.org/pub/X-Windows/ftp.hungry.com/chrpath/
or kde svn (since a few days): http://websvn.kde.org/trunk/kdesupport/chrpath/
Alex
-move std::string Destination to cmInstallGenerator, since all (except
the script one) have it and add a const accessor so it can be queried
-use temporary variables in cmInstallCommand for the generators so they can be reused easier
-some more const
Alex
-add a RESULT_VARIABLE to INCLUDE()
-add CMAKE_TOOLCHAIN_FILE for specifiying your (potentially crosscompiling) toolchain
-have TRY_RUN() complain if you try to use it in crosscompiling mode (which were compiled but cannot run on this system)
-use CMAKE_EXECUTABLE_SUFFIX in TRY_RUN(), probably TRY_RUN won't be able to
run the executables if they have a different suffix because they are
probably crosscompiled, but nevertheless it should be able to find them
-make several cmake variables presettable by the user: CMAKE_C/CXX_COMPILER, CMAKE_C/CXX_OUTPUT_EXTENSION, CMAKE_SYSTEM_NAME, CMAKE_SYSTEM_INFO_FILE
-support prefix for GNU toolchains (arm-elf-gcc, arm-elf-ar, arm-elf-strip etc.)
-move ranlib on OSX from the file command to a command in executed in cmake_install.cmake
-add support for stripping during install in cmake_install.cmake
-split out cl.cmake from Windows-cl.cmake, first (very incomplete) step to support MS crosscompiling tools
-remove stdio.h from the simple C program which checks if the compiler works, since this may not exist for some embedded platforms
-create a new CMakeFindBinUtils.cmake which collects the search fro ar, ranlib, strip, ld, link, install_name_tool and other tools like these
-add support for CMAKE_FIND_ROOT_PATH for all FIND_XXX commands, which is a
list of directories which will be prepended to all search directories, right
now as a cmake variable, turning it into a global cmake property may need
some more work
-remove cmTestTestHandler::TryExecutable(), it's unused
-split cmFileCommand::HandleInstall() into slightly smaller functions
Alex