Set the minimum required version of CMake high enough to avoid the
warning for CMAKE_LEGACY_CYGWIN_WIN32. The warning appears on stderr
and breaks the expected output matching.
It was a subtest of the RunCMake.ObjectLibrary test. However, we need
to test a build with ExternalProject after running CMake, which RunCMake tests
do not do.
The source files are already processed by cmQtAutomoc to look for
moc includes, so extend that to also look for ui_ includes and
find corresponding .ui files to process.
This replaces the need to invoke qt4_wrap_ui().
As the ui files are not likely to be part of the SOURCES of the
target, store the options associated with them separately in the
cmMakefile for querying during the autogen run.
Don't try to show the windows, which would require a gui capable test
machine, and that's not guaranteed.
Automatically link to qtmain.a on Windows to avoid a policy warning. Set
policy CMP0020 to NEW by increasing the required version.
Don't attempt to run the test when using Windows.
When using the boost MPL library, one can set a define to increase
the limit of how many variadic elements should be supported. The
default for BOOST_MPL_LIMIT_VECTOR_SIZE is 20:
http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/refmanual/limit-vector-size.html
If the foo library requires that to be set to 30, and the independent
bar library requires it to be set to 40, consumers of both need to set
it to 40.
add_library(foo INTERFACE)
set_property(TARGET foo PROPERTY INTERFACE_boost_mpl_vector_size 30)
set_property(TARGET foo PROPERTY COMPATIBLE_INTERFACE_NUMBER_MAX boost_mpl_vector_size)
target_compile_definitions(foo INTERFACE BOOST_MPL_LIMIT_VECTOR_SIZE=$<TARGET_PROPERTY:boost_mpl_vector_size>)
add_library(bar INTERFACE)
set_property(TARGET bar PROPERTY INTERFACE_boost_mpl_vector_size 40)
# Technically the next two lines are redundant, but as foo and bar are
# independent, they both set these interfaces.
set_property(TARGET bar PROPERTY COMPATIBLE_INTERFACE_NUMBER_MAX boost_mpl_vector_size)
target_compile_definitions(bar INTERFACE BOOST_MPL_LIMIT_VECTOR_SIZE=$<TARGET_PROPERTY:boost_mpl_vector_size>)
add_executable(user)
target_link_libraries(user foo bar)
Because the TARGET_PROPERTY reads the boost_mpl_vector_size property
from the HEAD of the dependency graph (the user target), and because
that property appears in the COMPATIBLE_INTERFACE_NUMBER_MAX of
the dependencies of the user target, the maximum value for it is
chosen for the compile definition, ie, 40.
There are also use-cases for choosing the minimum value of a number.
In Qt, deprecated API can be disabled by version. Setting the
definition QT_DISABLE_DEPRECATED_BEFORE=0 disables no deprecated
API. Setting it to 0x501000 disables API which was deprecated before
Qt 5.1 etc.
If two dependencies require the use of API which was deprecated in
different Qt versions, then COMPATIBLE_INTERFACE_NUMBER_MIN can be
used to ensure that both can compile.
When scanning CMake module files for .rst comments, recognize
bracket comments starting in ".rst:" too. For example:
#[[.rst:
Include the bracket comment content terminated by the closing bracket.
Exclude the line containing the bracket if it starts in "#".
Teach the CMakeLib.testRST test to cover multiple bracket lengths
and ending brackets on lines with and without "#".
Update the cmake-developer.7 manual to document the bracket-comment
syntax for .rst documentation.
Teach the CMake language lexer to treat the \-LF pair terminating a
line ending in an odd number of backslashes inside a quoted argument
as a continuation. Drop the pair from the returned quoted argument
token text. This will allow long lines inside quoted argument
strings to be divided across multiple lines in the source file.
It will also allow quoted argument text to start on the line after
the opening quote. For example, the code:
set(x "\
...")
sets variable "x" to the value "..." with no opening newline.
Previously an odd number of backslashes at the end of a line inside
a quoted argument would put a \-LF pair (or a \-CR pair) literally
in the argument. Then the command-argument evaluator would complain
that the \-escape sequence is invalid. Therefore this syntax is
available to use without changing behavior of valid existing code.
Teach the RunCMake.Syntax test to cover cases of quoted arguments
with lines ending in \, \\, and \\\. Odd counts are continuations.
Drop all behavior activated by setting CMAKE_BACKWARDS_COMPATIBILITY to
a value lower than 2.4, and generate an error when projects or the user
attempt to do so. In the error suggest using a CMake 2.8.x release.
Teach cmake_minimum_required to warn about projects that do not require
at least CMake 2.4. They are not supported by CMake >= 3.0.
Replace the documentation of CMAKE_BACKWARDS_COMPATIBILITY with a
reference to policy CMP0001.
Other warnings for the same policy already have similar output since
commit 81d2793e (Add differing target property content to policy CMP0022
warning, 2013-09-11).
Add cmCommand::Disallowed helper to check the setting of a policy that
disallows the command. Add a RunCMake.DisallowedCommands test
placeholder. Add a Help/policy/DISALLOWED_COMMAND.txt file for
inclusion by each policy document to avoid duplication of the common
text.
Teach cmRST to recognize non-markup lines ending in '::' followed by a
blank line as starting a literal block. Record the whole block as if it
were a literal block directive and print it just like a code block.
Extend the CMakeLib.testRST test to cover such cases.
Move the ProcessDirectiveParsedLiteral and ProcessDirectiveCodeBlock
method internals into an OutputMarkupLines helper. Pass through it a
new "inlineMarkup" parameter and teach OutputLine to understand it.
When false, do not process inline markup. Extend the CMakeLib.testRST
test to cover the two cases.
Add a string(CONCAT) command to simply concatenate input arguments
together. This will be useful for combining strings from different
quoting syntaxes. Add a RunCMake.string test covering these cases.
Introduce a policy to control the behavior.
The AliasTargets unit test already tests that using a
double-semicolon in the name is not an error. Change the ExportImport
test to use a namespace with a double-semicolon too.
The result is that the depends of the target are created.
So,
add_library(somelib foo.cpp)
add_library(anotherlib EXCLUDE_FROM_ALL foo.cpp)
add_library(extra EXCLUDE_FROM_ALL foo.cpp)
target_link_libraries(anotherlib extra)
add_library(iface INTERFACE)
target_link_libraries(iface INTERFACE anotherlib)
Executing 'make iface' will result in the anotherlib and extra targets
being made.
Adding a regular executable to the INTERFACE of an INTERFACE_LIBRARY
will not result in the executable being built with 'make iface' because
of the logic in cmComputeTargetDepends::AddTargetDepend.
So far, this is implemented only for the Makefile generator. Other
generators will follow if this feature is possible for them.
Make INTERFACE_LIBRARY targets part of the all target by default.
Test this by building the all target and making the expected library
EXCLUDE_FROM_ALL.
daa0f6f Add Lua-style long brackets and long comments to CMake language
a8c6523 cmListFileLexer: Convert CRLF -> LF newlines explicitly
dbd9333 cmListFileLexer: Allow a leading UTF-8 Byte-Order-Mark (#11137)
5645783 cmListFileLexer: Allow command names with one letter (#14181)
Set the minimum required version of CMake high enough to avoid the
warning for CMAKE_LEGACY_CYGWIN_WIN32. The warning appears on stderr
and breaks the expected output matching.
This has not been allowed since they were introduced in
commit 91438222 (target_link_libraries: Add LINK_(PUBLIC|PRIVATE)
options, 2011-10-07), but allowing this form makes it more compatible
with the newer PUBLIC and PRIVATE keywords.
Teach the CMake language parser to recognize Lua-style "long bracket"
arguments. These start with two '[' separated by zero or more '='
characters e.g. "[[" or "[=[" or "[==[". They end with two ']'
separated by the same number of '=' as the opening bracket. There is no
nesting of brackets of the same level (number of '='). No escapes,
variable expansion, or other processing is performed on the content
between such brackets so they always represent exactly one argument.
Also teach CMake to parse and ignore "long comment" syntax. A long
comment starts with "#" immediately followed by an opening long bracket.
It ends at the matching close long bracket.
Teach the RunCMake.Syntax test to cover long bracket and long comment
cases.
Read input files in binary mode instead of text mode and convert CRLF
newlines to LF newlines explicitly in our own buffer. This is necessary
to read CMake source files with CRLF newlines on platforms whose C
runtime libraries do not transform newlines in text mode. For example,
a Cygwin or Linux binary may not transform CRLF -> LF in files read from
a Windows filesystem. Perform the conversion ourselves to ensure that
multi-line string literals in CMake source files have LF newlines
everywhere.
Teach the lexer to read a UTF-8, UTF-16 BE/LE, or UTF-32 BE/LE
Byte-Order-Mark from the start of a file if any is present. Report an
error on files using UTF-16 or UTF-32 and accept a UTF-8 or missing BOM.
Teach the lexer to treat a single letter as an identifier instead of an
unquoted argument. Outside of a command invocation, the parser treats
an identifier as a command name and an unquoted argument as an error.
Inside of a command invocation, the parser treats an identifier as an
unquoted argument. Therefore this change to the lexer will make what
was previously an error case work with no other behavioral change.