CMake/Source/cmELF.cxx

912 lines
24 KiB
C++
Raw Normal View History

Simplify CMake per-source license notices Per-source copyright/license notice headers that spell out copyright holder names and years are hard to maintain and often out-of-date or plain wrong. Precise contributor information is already maintained automatically by the version control tool. Ultimately it is the receiver of a file who is responsible for determining its licensing status, and per-source notices are merely a convenience. Therefore it is simpler and more accurate for each source to have a generic notice of the license name and references to more detailed information on copyright holders and full license terms. Our `Copyright.txt` file now contains a list of Contributors whose names appeared source-level copyright notices. It also references version control history for more precise information. Therefore we no longer need to spell out the list of Contributors in each source file notice. Replace CMake per-source copyright/license notice headers with a short description of the license and links to `Copyright.txt` and online information available from "https://cmake.org/licensing". The online URL also handles cases of modules being copied out of our source into other projects, so we can drop our notices about replacing links with full license text. Run the `Utilities/Scripts/filter-notices.bash` script to perform the majority of the replacements mechanically. Manually fix up shebang lines and trailing newlines in a few files. Manually update the notices in a few files that the script does not handle.
2016-09-27 22:01:08 +03:00
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing for details. */
#include "cmELF.h"
#include <cm_auto_ptr.hxx>
#include <cm_kwiml.h>
#include <cmsys/FStream.hxx>
#include <map>
#include <sstream>
#include <stddef.h>
#include <utility>
#include <vector>
// Include the ELF format information system header.
#if defined(__OpenBSD__)
#include <elf_abi.h>
#include <stdint.h>
#elif defined(__HAIKU__)
#include <elf32.h>
#include <elf64.h>
typedef struct Elf32_Ehdr Elf32_Ehdr;
typedef struct Elf32_Shdr Elf32_Shdr;
typedef struct Elf32_Sym Elf32_Sym;
typedef struct Elf32_Rel Elf32_Rel;
typedef struct Elf32_Rela Elf32_Rela;
#define ELFMAG0 0x7F
#define ELFMAG1 'E'
#define ELFMAG2 'L'
#define ELFMAG3 'F'
#define ET_NONE 0
#define ET_REL 1
#define ET_EXEC 2
#define ET_DYN 3
#define ET_CORE 4
#define EM_386 3
#define EM_SPARC 2
#define EM_PPC 20
#else
#include <elf.h>
#endif
#if defined(__sun)
#include <sys/link.h> // For dynamic section information
#endif
#ifdef _SCO_DS
#include <link.h> // For DT_SONAME etc.
#endif
// Low-level byte swapping implementation.
template <size_t s>
struct cmELFByteSwapSize
{
};
void cmELFByteSwap(char* /*unused*/, cmELFByteSwapSize<1> const& /*unused*/)
{
}
void cmELFByteSwap(char* data, cmELFByteSwapSize<2> const& /*unused*/)
{
char one_byte;
one_byte = data[0];
data[0] = data[1];
data[1] = one_byte;
}
void cmELFByteSwap(char* data, cmELFByteSwapSize<4> const& /*unused*/)
{
char one_byte;
one_byte = data[0];
data[0] = data[3];
data[3] = one_byte;
one_byte = data[1];
data[1] = data[2];
data[2] = one_byte;
}
void cmELFByteSwap(char* data, cmELFByteSwapSize<8> const& /*unused*/)
{
char one_byte;
one_byte = data[0];
data[0] = data[7];
data[7] = one_byte;
one_byte = data[1];
data[1] = data[6];
data[6] = one_byte;
one_byte = data[2];
data[2] = data[5];
data[5] = one_byte;
one_byte = data[3];
data[3] = data[4];
data[4] = one_byte;
}
// Low-level byte swapping interface.
template <typename T>
void cmELFByteSwap(T& x)
{
cmELFByteSwap(reinterpret_cast<char*>(&x), cmELFByteSwapSize<sizeof(T)>());
}
class cmELFInternal
{
public:
typedef cmELF::StringEntry StringEntry;
enum ByteOrderType
{
ByteOrderMSB,
ByteOrderLSB
};
// Construct and take ownership of the file stream object.
cmELFInternal(cmELF* external, CM_AUTO_PTR<cmsys::ifstream>& fin,
ByteOrderType order)
: External(external)
, Stream(*fin.release())
, ByteOrder(order)
, ELFType(cmELF::FileTypeInvalid)
{
// In most cases the processor-specific byte order will match that
// of the target execution environment. If we choose wrong here
// it is fixed when the header is read.
#if KWIML_ABI_ENDIAN_ID == KWIML_ABI_ENDIAN_ID_LITTLE
this->NeedSwap = (this->ByteOrder == ByteOrderMSB);
#elif KWIML_ABI_ENDIAN_ID == KWIML_ABI_ENDIAN_ID_BIG
this->NeedSwap = (this->ByteOrder == ByteOrderLSB);
#else
this->NeedSwap = false; // Final decision is at runtime anyway.
#endif
// We have not yet loaded the section info.
this->DynamicSectionIndex = -1;
}
// Destruct and delete the file stream object.
virtual ~cmELFInternal() { delete &this->Stream; }
// Forward to the per-class implementation.
virtual unsigned int GetNumberOfSections() const = 0;
virtual unsigned int GetDynamicEntryCount() = 0;
virtual unsigned long GetDynamicEntryPosition(int j) = 0;
virtual StringEntry const* GetDynamicSectionString(unsigned int tag) = 0;
virtual void PrintInfo(std::ostream& os) const = 0;
bool ReadBytes(unsigned long pos, unsigned long size, char* buf)
{
this->Stream.seekg(pos);
this->Stream.read(buf, size);
return !this->Stream.fail();
}
// Lookup the SONAME in the DYNAMIC section.
StringEntry const* GetSOName()
{
return this->GetDynamicSectionString(DT_SONAME);
}
// Lookup the RPATH in the DYNAMIC section.
StringEntry const* GetRPath()
{
return this->GetDynamicSectionString(DT_RPATH);
}
// Lookup the RUNPATH in the DYNAMIC section.
StringEntry const* GetRunPath()
{
#if defined(DT_RUNPATH)
return this->GetDynamicSectionString(DT_RUNPATH);
#else
return 0;
#endif
}
// Return the recorded ELF type.
cmELF::FileType GetFileType() const { return this->ELFType; }
protected:
// Data common to all ELF class implementations.
// The external cmELF object.
cmELF* External;
// The stream from which to read.
std::istream& Stream;
// The byte order of the ELF file.
ByteOrderType ByteOrder;
// The ELF file type.
cmELF::FileType ELFType;
// Whether we need to byte-swap structures read from the stream.
bool NeedSwap;
// The section header index of the DYNAMIC section (-1 if none).
int DynamicSectionIndex;
// Helper methods for subclasses.
void SetErrorMessage(const char* msg)
{
this->External->ErrorMessage = msg;
this->ELFType = cmELF::FileTypeInvalid;
}
// Store string table entry states.
std::map<unsigned int, StringEntry> DynamicSectionStrings;
};
// Configure the implementation template for 32-bit ELF files.
struct cmELFTypes32
{
typedef Elf32_Ehdr ELF_Ehdr;
typedef Elf32_Shdr ELF_Shdr;
typedef Elf32_Dyn ELF_Dyn;
typedef Elf32_Half ELF_Half;
typedef KWIML_INT_uint32_t tagtype;
static const char* GetName() { return "32-bit"; }
};
// Configure the implementation template for 64-bit ELF files.
#ifndef _SCO_DS
struct cmELFTypes64
{
typedef Elf64_Ehdr ELF_Ehdr;
typedef Elf64_Shdr ELF_Shdr;
typedef Elf64_Dyn ELF_Dyn;
typedef Elf64_Half ELF_Half;
typedef KWIML_INT_uint64_t tagtype;
static const char* GetName() { return "64-bit"; }
};
#endif
// Parser implementation template.
template <class Types>
class cmELFInternalImpl : public cmELFInternal
{
public:
// Copy the ELF file format types from our configuration parameter.
typedef typename Types::ELF_Ehdr ELF_Ehdr;
typedef typename Types::ELF_Shdr ELF_Shdr;
typedef typename Types::ELF_Dyn ELF_Dyn;
typedef typename Types::ELF_Half ELF_Half;
typedef typename Types::tagtype tagtype;
// Construct with a stream and byte swap indicator.
cmELFInternalImpl(cmELF* external, CM_AUTO_PTR<cmsys::ifstream>& fin,
ByteOrderType order);
// Return the number of sections as specified by the ELF header.
unsigned int GetNumberOfSections() const CM_OVERRIDE
{
return static_cast<unsigned int>(this->ELFHeader.e_shnum);
}
// Get the file position and size of a dynamic section entry.
unsigned int GetDynamicEntryCount() CM_OVERRIDE;
unsigned long GetDynamicEntryPosition(int j) CM_OVERRIDE;
// Lookup a string from the dynamic section with the given tag.
StringEntry const* GetDynamicSectionString(unsigned int tag) CM_OVERRIDE;
// Print information about the ELF file.
void PrintInfo(std::ostream& os) const CM_OVERRIDE
{
os << "ELF " << Types::GetName();
if (this->ByteOrder == ByteOrderMSB) {
os << " MSB";
} else if (this->ByteOrder == ByteOrderLSB) {
os << " LSB";
}
switch (this->ELFType) {
2008-02-28 16:32:05 +03:00
case cmELF::FileTypeInvalid:
os << " invalid file";
break;
case cmELF::FileTypeRelocatableObject:
os << " relocatable object";
break;
case cmELF::FileTypeExecutable:
os << " executable";
break;
case cmELF::FileTypeSharedLibrary:
os << " shared library";
break;
case cmELF::FileTypeCore:
os << " core file";
break;
case cmELF::FileTypeSpecificOS:
os << " os-specific type";
break;
case cmELF::FileTypeSpecificProc:
os << " processor-specific type";
break;
}
os << "\n";
}
private:
void ByteSwap(ELF_Ehdr& elf_header)
{
cmELFByteSwap(elf_header.e_type);
cmELFByteSwap(elf_header.e_machine);
cmELFByteSwap(elf_header.e_version);
cmELFByteSwap(elf_header.e_entry);
cmELFByteSwap(elf_header.e_phoff);
cmELFByteSwap(elf_header.e_shoff);
cmELFByteSwap(elf_header.e_flags);
cmELFByteSwap(elf_header.e_ehsize);
cmELFByteSwap(elf_header.e_phentsize);
cmELFByteSwap(elf_header.e_phnum);
cmELFByteSwap(elf_header.e_shentsize);
cmELFByteSwap(elf_header.e_shnum);
cmELFByteSwap(elf_header.e_shstrndx);
}
void ByteSwap(ELF_Shdr& sec_header)
{
cmELFByteSwap(sec_header.sh_name);
cmELFByteSwap(sec_header.sh_type);
cmELFByteSwap(sec_header.sh_flags);
cmELFByteSwap(sec_header.sh_addr);
cmELFByteSwap(sec_header.sh_offset);
cmELFByteSwap(sec_header.sh_size);
cmELFByteSwap(sec_header.sh_link);
cmELFByteSwap(sec_header.sh_info);
cmELFByteSwap(sec_header.sh_addralign);
cmELFByteSwap(sec_header.sh_entsize);
}
void ByteSwap(ELF_Dyn& dyn)
{
cmELFByteSwap(dyn.d_tag);
switch (dyn.d_tag) {
case DT_NULL: /* dyn.d_un ignored */
break;
case DT_NEEDED:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_PLTRELSZ:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_PLTGOT:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_HASH:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_STRTAB:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_SYMTAB:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_RELA:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_RELASZ:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_RELAENT:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_STRSZ:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_SYMENT:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_INIT:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_FINI:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_SONAME:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_RPATH:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_SYMBOLIC: /* dyn.d_un ignored */
break;
case DT_REL:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_RELSZ:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_RELENT:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_PLTREL:
cmELFByteSwap(dyn.d_un.d_val);
break;
case DT_DEBUG:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
case DT_TEXTREL: /* dyn.d_un ignored */
break;
case DT_JMPREL:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
#ifdef T_BIND_NOW
case T_BIND_NOW: /* dyn.d_un ignored */
break;
#endif
#ifdef DT_INIT_ARRAY
case DT_INIT_ARRAY:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
#endif
#ifdef DT_FINI_ARRAY
case DT_FINI_ARRAY:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
#endif
#ifdef DT_INIT_ARRAYSZ
case DT_INIT_ARRAYSZ:
cmELFByteSwap(dyn.d_un.d_val);
break;
#endif
#ifdef DT_FINI_ARRAYSZ
case DT_FINI_ARRAYSZ:
cmELFByteSwap(dyn.d_un.d_val);
break;
#endif
#ifdef DT_RUNPATH
case DT_RUNPATH:
cmELFByteSwap(dyn.d_un.d_val);
break;
#endif
#ifdef DT_FLAGS
case DT_FLAGS:
cmELFByteSwap(dyn.d_un.d_val);
break;
#endif
#ifdef DT_PREINIT_ARRAY
case DT_PREINIT_ARRAY:
cmELFByteSwap(dyn.d_un.d_ptr);
break;
#endif
#ifdef DT_PREINIT_ARRAYSZ
case DT_PREINIT_ARRAYSZ:
cmELFByteSwap(dyn.d_un.d_val);
break;
#endif
}
}
bool FileTypeValid(ELF_Half et)
{
unsigned int eti = static_cast<unsigned int>(et);
if (eti == ET_NONE || eti == ET_REL || eti == ET_EXEC || eti == ET_DYN ||
eti == ET_CORE) {
return true;
}
#if defined(ET_LOOS) && defined(ET_HIOS)
if (eti >= ET_LOOS && eti <= ET_HIOS) {
return true;
}
#endif
#if defined(ET_LOPROC) && defined(ET_HIPROC)
if (eti >= ET_LOPROC && eti <= ET_HIPROC) {
return true;
}
#endif
return false;
}
bool Read(ELF_Ehdr& x)
{
// Read the header from the file.
if (!this->Stream.read(reinterpret_cast<char*>(&x), sizeof(x))) {
return false;
}
// The byte order of ELF header fields may not match that of the
// processor-specific data. The header fields are ordered to
// match the target execution environment, so we may need to
// memorize the order of all platforms based on the e_machine
// value. As a heuristic, if the type is invalid but its
// swapped value is okay then flip our swap mode.
ELF_Half et = x.e_type;
if (this->NeedSwap) {
cmELFByteSwap(et);
}
if (!this->FileTypeValid(et)) {
cmELFByteSwap(et);
if (this->FileTypeValid(et)) {
// The previous byte order guess was wrong. Flip it.
this->NeedSwap = !this->NeedSwap;
}
}
// Fix the byte order of the header.
if (this->NeedSwap) {
ByteSwap(x);
}
return true;
}
bool Read(ELF_Shdr& x)
{
if (this->Stream.read(reinterpret_cast<char*>(&x), sizeof(x)) &&
this->NeedSwap) {
ByteSwap(x);
}
return !this->Stream.fail();
}
bool Read(ELF_Dyn& x)
{
if (this->Stream.read(reinterpret_cast<char*>(&x), sizeof(x)) &&
this->NeedSwap) {
ByteSwap(x);
}
return !this->Stream.fail();
}
bool LoadSectionHeader(ELF_Half i)
{
// Read the section header from the file.
this->Stream.seekg(this->ELFHeader.e_shoff +
this->ELFHeader.e_shentsize * i);
if (!this->Read(this->SectionHeaders[i])) {
return false;
}
// Identify some important sections.
if (this->SectionHeaders[i].sh_type == SHT_DYNAMIC) {
this->DynamicSectionIndex = i;
}
return true;
}
bool LoadDynamicSection();
// Store the main ELF header.
ELF_Ehdr ELFHeader;
// Store all the section headers.
std::vector<ELF_Shdr> SectionHeaders;
// Store all entries of the DYNAMIC section.
std::vector<ELF_Dyn> DynamicSectionEntries;
};
template <class Types>
cmELFInternalImpl<Types>::cmELFInternalImpl(cmELF* external,
CM_AUTO_PTR<cmsys::ifstream>& fin,
ByteOrderType order)
: cmELFInternal(external, fin, order)
{
// Read the main header.
if (!this->Read(this->ELFHeader)) {
this->SetErrorMessage("Failed to read main ELF header.");
return;
}
// Determine the ELF file type.
switch (this->ELFHeader.e_type) {
case ET_NONE:
this->SetErrorMessage("ELF file type is NONE.");
return;
case ET_REL:
this->ELFType = cmELF::FileTypeRelocatableObject;
break;
case ET_EXEC:
this->ELFType = cmELF::FileTypeExecutable;
break;
case ET_DYN:
this->ELFType = cmELF::FileTypeSharedLibrary;
break;
case ET_CORE:
this->ELFType = cmELF::FileTypeCore;
break;
default: {
unsigned int eti = static_cast<unsigned int>(this->ELFHeader.e_type);
#if defined(ET_LOOS) && defined(ET_HIOS)
if (eti >= ET_LOOS && eti <= ET_HIOS) {
this->ELFType = cmELF::FileTypeSpecificOS;
break;
}
#endif
#if defined(ET_LOPROC) && defined(ET_HIPROC)
if (eti >= ET_LOPROC && eti <= ET_HIPROC) {
this->ELFType = cmELF::FileTypeSpecificProc;
break;
}
#endif
std::ostringstream e;
e << "Unknown ELF file type " << eti;
this->SetErrorMessage(e.str().c_str());
return;
}
}
// Load the section headers.
this->SectionHeaders.resize(this->ELFHeader.e_shnum);
for (ELF_Half i = 0; i < this->ELFHeader.e_shnum; ++i) {
if (!this->LoadSectionHeader(i)) {
this->SetErrorMessage("Failed to load section headers.");
return;
}
}
}
template <class Types>
bool cmELFInternalImpl<Types>::LoadDynamicSection()
{
// If there is no dynamic section we are done.
if (this->DynamicSectionIndex < 0) {
return false;
}
// If the section was already loaded we are done.
if (!this->DynamicSectionEntries.empty()) {
return true;
}
// If there are no entries we are done.
ELF_Shdr const& sec = this->SectionHeaders[this->DynamicSectionIndex];
if (sec.sh_entsize == 0) {
return false;
}
// Allocate the dynamic section entries.
int n = static_cast<int>(sec.sh_size / sec.sh_entsize);
this->DynamicSectionEntries.resize(n);
// Read each entry.
for (int j = 0; j < n; ++j) {
// Seek to the beginning of the section entry.
this->Stream.seekg(sec.sh_offset + sec.sh_entsize * j);
ELF_Dyn& dyn = this->DynamicSectionEntries[j];
// Try reading the entry.
if (!this->Read(dyn)) {
this->SetErrorMessage("Error reading entry from DYNAMIC section.");
this->DynamicSectionIndex = -1;
return false;
}
}
return true;
}
template <class Types>
unsigned int cmELFInternalImpl<Types>::GetDynamicEntryCount()
{
if (!this->LoadDynamicSection()) {
return 0;
}
for (unsigned int i = 0; i < this->DynamicSectionEntries.size(); ++i) {
if (this->DynamicSectionEntries[i].d_tag == DT_NULL) {
return i;
}
}
return static_cast<unsigned int>(this->DynamicSectionEntries.size());
}
template <class Types>
unsigned long cmELFInternalImpl<Types>::GetDynamicEntryPosition(int j)
{
if (!this->LoadDynamicSection()) {
return 0;
}
if (j < 0 || j >= static_cast<int>(this->DynamicSectionEntries.size())) {
return 0;
}
ELF_Shdr const& sec = this->SectionHeaders[this->DynamicSectionIndex];
return static_cast<unsigned long>(sec.sh_offset + sec.sh_entsize * j);
}
template <class Types>
cmELF::StringEntry const* cmELFInternalImpl<Types>::GetDynamicSectionString(
unsigned int tag)
{
// Short-circuit if already checked.
std::map<unsigned int, StringEntry>::iterator dssi =
this->DynamicSectionStrings.find(tag);
if (dssi != this->DynamicSectionStrings.end()) {
if (dssi->second.Position > 0) {
return &dssi->second;
}
2016-06-27 23:44:16 +03:00
return CM_NULLPTR;
}
// Create an entry for this tag. Assume it is missing until found.
StringEntry& se = this->DynamicSectionStrings[tag];
se.Position = 0;
se.Size = 0;
se.IndexInSection = -1;
// Try reading the dynamic section.
if (!this->LoadDynamicSection()) {
2016-06-27 23:44:16 +03:00
return CM_NULLPTR;
}
// Get the string table referenced by the DYNAMIC section.
ELF_Shdr const& sec = this->SectionHeaders[this->DynamicSectionIndex];
if (sec.sh_link >= this->SectionHeaders.size()) {
this->SetErrorMessage("Section DYNAMIC has invalid string table index.");
2016-06-27 23:44:16 +03:00
return CM_NULLPTR;
}
ELF_Shdr const& strtab = this->SectionHeaders[sec.sh_link];
// Look for the requested entry.
for (typename std::vector<ELF_Dyn>::iterator di =
this->DynamicSectionEntries.begin();
di != this->DynamicSectionEntries.end(); ++di) {
ELF_Dyn& dyn = *di;
if (static_cast<tagtype>(dyn.d_tag) == static_cast<tagtype>(tag)) {
// We found the tag requested.
// Make sure the position given is within the string section.
if (dyn.d_un.d_val >= strtab.sh_size) {
this->SetErrorMessage("Section DYNAMIC references string beyond "
"the end of its string section.");
2016-06-27 23:44:16 +03:00
return CM_NULLPTR;
}
// Seek to the position reported by the entry.
unsigned long first = static_cast<unsigned long>(dyn.d_un.d_val);
unsigned long last = first;
unsigned long end = static_cast<unsigned long>(strtab.sh_size);
this->Stream.seekg(strtab.sh_offset + first);
// Read the string. It may be followed by more than one NULL
// terminator. Count the total size of the region allocated to
// the string. This assumes that the next string in the table
// is non-empty, but the "chrpath" tool makes the same
// assumption.
bool terminated = false;
char c;
while (last != end && this->Stream.get(c) && !(terminated && c)) {
++last;
if (c) {
se.Value += c;
} else {
terminated = true;
}
}
// Make sure the whole value was read.
if (!this->Stream) {
this->SetErrorMessage("Dynamic section specifies unreadable RPATH.");
se.Value = "";
2016-06-27 23:44:16 +03:00
return CM_NULLPTR;
}
// The value has been read successfully. Report it.
se.Position = static_cast<unsigned long>(strtab.sh_offset + first);
se.Size = last - first;
2010-09-10 22:42:09 +04:00
se.IndexInSection =
static_cast<int>(di - this->DynamicSectionEntries.begin());
return &se;
}
}
2016-06-27 23:44:16 +03:00
return CM_NULLPTR;
}
//============================================================================
// External class implementation.
cmELF::cmELF(const char* fname)
2016-06-27 23:44:16 +03:00
: Internal(CM_NULLPTR)
{
// Try to open the file.
CM_AUTO_PTR<cmsys::ifstream> fin(new cmsys::ifstream(fname));
// Quit now if the file could not be opened.
if (!fin.get() || !*fin) {
this->ErrorMessage = "Error opening input file.";
return;
}
// Read the ELF identification block.
char ident[EI_NIDENT];
if (!fin->read(ident, EI_NIDENT)) {
this->ErrorMessage = "Error reading ELF identification.";
return;
}
if (!fin->seekg(0)) {
this->ErrorMessage = "Error seeking to beginning of file.";
return;
}
// Verify the ELF identification.
if (!(ident[EI_MAG0] == ELFMAG0 && ident[EI_MAG1] == ELFMAG1 &&
ident[EI_MAG2] == ELFMAG2 && ident[EI_MAG3] == ELFMAG3)) {
this->ErrorMessage = "File does not have a valid ELF identification.";
return;
}
// Check the byte order in which the rest of the file is encoded.
cmELFInternal::ByteOrderType order;
if (ident[EI_DATA] == ELFDATA2LSB) {
// File is LSB.
order = cmELFInternal::ByteOrderLSB;
} else if (ident[EI_DATA] == ELFDATA2MSB) {
// File is MSB.
order = cmELFInternal::ByteOrderMSB;
} else {
this->ErrorMessage = "ELF file is not LSB or MSB encoded.";
return;
}
// Check the class of the file and construct the corresponding
// parser implementation.
if (ident[EI_CLASS] == ELFCLASS32) {
// 32-bit ELF
this->Internal = new cmELFInternalImpl<cmELFTypes32>(this, fin, order);
}
#ifndef _SCO_DS
else if (ident[EI_CLASS] == ELFCLASS64) {
// 64-bit ELF
this->Internal = new cmELFInternalImpl<cmELFTypes64>(this, fin, order);
}
#endif
else {
this->ErrorMessage = "ELF file class is not 32-bit or 64-bit.";
return;
}
}
cmELF::~cmELF()
{
delete this->Internal;
}
bool cmELF::Valid() const
{
return this->Internal && this->Internal->GetFileType() != FileTypeInvalid;
}
cmELF::FileType cmELF::GetFileType() const
{
if (this->Valid()) {
return this->Internal->GetFileType();
}
2016-08-18 21:36:29 +03:00
return FileTypeInvalid;
}
unsigned int cmELF::GetNumberOfSections() const
{
if (this->Valid()) {
return this->Internal->GetNumberOfSections();
}
2016-08-18 21:36:29 +03:00
return 0;
}
unsigned int cmELF::GetDynamicEntryCount() const
{
if (this->Valid()) {
return this->Internal->GetDynamicEntryCount();
}
2016-08-18 21:36:29 +03:00
return 0;
}
unsigned long cmELF::GetDynamicEntryPosition(int index) const
{
if (this->Valid()) {
return this->Internal->GetDynamicEntryPosition(index);
}
2016-08-18 21:36:29 +03:00
return 0;
}
bool cmELF::ReadBytes(unsigned long pos, unsigned long size, char* buf) const
{
if (this->Valid()) {
return this->Internal->ReadBytes(pos, size, buf);
}
2016-08-18 21:36:29 +03:00
return false;
}
bool cmELF::GetSOName(std::string& soname)
{
if (StringEntry const* se = this->GetSOName()) {
soname = se->Value;
return true;
}
2016-08-18 21:36:29 +03:00
return false;
}
cmELF::StringEntry const* cmELF::GetSOName()
{
if (this->Valid() &&
this->Internal->GetFileType() == cmELF::FileTypeSharedLibrary) {
return this->Internal->GetSOName();
}
2016-08-18 21:36:29 +03:00
return CM_NULLPTR;
}
cmELF::StringEntry const* cmELF::GetRPath()
{
if (this->Valid() &&
(this->Internal->GetFileType() == cmELF::FileTypeExecutable ||
this->Internal->GetFileType() == cmELF::FileTypeSharedLibrary)) {
return this->Internal->GetRPath();
}
2016-08-18 21:36:29 +03:00
return CM_NULLPTR;
}
cmELF::StringEntry const* cmELF::GetRunPath()
{
if (this->Valid() &&
(this->Internal->GetFileType() == cmELF::FileTypeExecutable ||
this->Internal->GetFileType() == cmELF::FileTypeSharedLibrary)) {
return this->Internal->GetRunPath();
}
2016-08-18 21:36:29 +03:00
return CM_NULLPTR;
}
void cmELF::PrintInfo(std::ostream& os) const
{
if (this->Valid()) {
this->Internal->PrintInfo(os);
} else {
os << "Not a valid ELF file.\n";
}
}