1343 lines
36 KiB
C
1343 lines
36 KiB
C
|
/*-
|
||
|
* Copyright (c) 2003-2011 Tim Kientzle
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This file contains the "essential" portions of the read API, that
|
||
|
* is, stuff that will probably always be used by any client that
|
||
|
* actually needs to read an archive. Optional pieces have been, as
|
||
|
* far as possible, separated out into separate files to avoid
|
||
|
* needlessly bloating statically-linked clients.
|
||
|
*/
|
||
|
|
||
|
#include "archive_platform.h"
|
||
|
__FBSDID("$FreeBSD: head/lib/libarchive/archive_read.c 201157 2009-12-29 05:30:23Z kientzle $");
|
||
|
|
||
|
#ifdef HAVE_ERRNO_H
|
||
|
#include <errno.h>
|
||
|
#endif
|
||
|
#include <stdio.h>
|
||
|
#ifdef HAVE_STDLIB_H
|
||
|
#include <stdlib.h>
|
||
|
#endif
|
||
|
#ifdef HAVE_STRING_H
|
||
|
#include <string.h>
|
||
|
#endif
|
||
|
#ifdef HAVE_UNISTD_H
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
|
||
|
#include "archive.h"
|
||
|
#include "archive_entry.h"
|
||
|
#include "archive_private.h"
|
||
|
#include "archive_read_private.h"
|
||
|
|
||
|
#define minimum(a, b) (a < b ? a : b)
|
||
|
|
||
|
static int choose_filters(struct archive_read *);
|
||
|
static int choose_format(struct archive_read *);
|
||
|
static void free_filters(struct archive_read *);
|
||
|
static int close_filters(struct archive_read *);
|
||
|
static struct archive_vtable *archive_read_vtable(void);
|
||
|
static int64_t _archive_filter_bytes(struct archive *, int);
|
||
|
static int _archive_filter_code(struct archive *, int);
|
||
|
static const char *_archive_filter_name(struct archive *, int);
|
||
|
static int _archive_filter_count(struct archive *);
|
||
|
static int _archive_read_close(struct archive *);
|
||
|
static int _archive_read_data_block(struct archive *,
|
||
|
const void **, size_t *, int64_t *);
|
||
|
static int _archive_read_free(struct archive *);
|
||
|
static int _archive_read_next_header(struct archive *,
|
||
|
struct archive_entry **);
|
||
|
static int _archive_read_next_header2(struct archive *,
|
||
|
struct archive_entry *);
|
||
|
static int64_t advance_file_pointer(struct archive_read_filter *, int64_t);
|
||
|
|
||
|
static struct archive_vtable *
|
||
|
archive_read_vtable(void)
|
||
|
{
|
||
|
static struct archive_vtable av;
|
||
|
static int inited = 0;
|
||
|
|
||
|
if (!inited) {
|
||
|
av.archive_filter_bytes = _archive_filter_bytes;
|
||
|
av.archive_filter_code = _archive_filter_code;
|
||
|
av.archive_filter_name = _archive_filter_name;
|
||
|
av.archive_filter_count = _archive_filter_count;
|
||
|
av.archive_read_data_block = _archive_read_data_block;
|
||
|
av.archive_read_next_header = _archive_read_next_header;
|
||
|
av.archive_read_next_header2 = _archive_read_next_header2;
|
||
|
av.archive_free = _archive_read_free;
|
||
|
av.archive_close = _archive_read_close;
|
||
|
inited = 1;
|
||
|
}
|
||
|
return (&av);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate, initialize and return a struct archive object.
|
||
|
*/
|
||
|
struct archive *
|
||
|
archive_read_new(void)
|
||
|
{
|
||
|
struct archive_read *a;
|
||
|
|
||
|
a = (struct archive_read *)malloc(sizeof(*a));
|
||
|
if (a == NULL)
|
||
|
return (NULL);
|
||
|
memset(a, 0, sizeof(*a));
|
||
|
a->archive.magic = ARCHIVE_READ_MAGIC;
|
||
|
|
||
|
a->archive.state = ARCHIVE_STATE_NEW;
|
||
|
a->entry = archive_entry_new2(&a->archive);
|
||
|
a->archive.vtable = archive_read_vtable();
|
||
|
|
||
|
return (&a->archive);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Record the do-not-extract-to file. This belongs in archive_read_extract.c.
|
||
|
*/
|
||
|
void
|
||
|
archive_read_extract_set_skip_file(struct archive *_a, int64_t d, int64_t i)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
|
||
|
if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_MAGIC,
|
||
|
ARCHIVE_STATE_ANY, "archive_read_extract_set_skip_file"))
|
||
|
return;
|
||
|
a->skip_file_set = 1;
|
||
|
a->skip_file_dev = d;
|
||
|
a->skip_file_ino = i;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Open the archive
|
||
|
*/
|
||
|
int
|
||
|
archive_read_open(struct archive *a, void *client_data,
|
||
|
archive_open_callback *client_opener, archive_read_callback *client_reader,
|
||
|
archive_close_callback *client_closer)
|
||
|
{
|
||
|
/* Old archive_read_open() is just a thin shell around
|
||
|
* archive_read_open1. */
|
||
|
archive_read_set_open_callback(a, client_opener);
|
||
|
archive_read_set_read_callback(a, client_reader);
|
||
|
archive_read_set_close_callback(a, client_closer);
|
||
|
archive_read_set_callback_data(a, client_data);
|
||
|
return archive_read_open1(a);
|
||
|
}
|
||
|
|
||
|
|
||
|
int
|
||
|
archive_read_open2(struct archive *a, void *client_data,
|
||
|
archive_open_callback *client_opener,
|
||
|
archive_read_callback *client_reader,
|
||
|
archive_skip_callback *client_skipper,
|
||
|
archive_close_callback *client_closer)
|
||
|
{
|
||
|
/* Old archive_read_open2() is just a thin shell around
|
||
|
* archive_read_open1. */
|
||
|
archive_read_set_callback_data(a, client_data);
|
||
|
archive_read_set_open_callback(a, client_opener);
|
||
|
archive_read_set_read_callback(a, client_reader);
|
||
|
archive_read_set_skip_callback(a, client_skipper);
|
||
|
archive_read_set_close_callback(a, client_closer);
|
||
|
return archive_read_open1(a);
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
client_read_proxy(struct archive_read_filter *self, const void **buff)
|
||
|
{
|
||
|
ssize_t r;
|
||
|
r = (self->archive->client.reader)(&self->archive->archive,
|
||
|
self->data, buff);
|
||
|
return (r);
|
||
|
}
|
||
|
|
||
|
static int64_t
|
||
|
client_skip_proxy(struct archive_read_filter *self, int64_t request)
|
||
|
{
|
||
|
if (request < 0)
|
||
|
__archive_errx(1, "Negative skip requested.");
|
||
|
if (request == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (self->archive->client.skipper != NULL) {
|
||
|
/* Seek requests over 1GiB are broken down into
|
||
|
* multiple seeks. This avoids overflows when the
|
||
|
* requests get passed through 32-bit arguments. */
|
||
|
int64_t skip_limit = (int64_t)1 << 30;
|
||
|
int64_t total = 0;
|
||
|
for (;;) {
|
||
|
int64_t get, ask = request;
|
||
|
if (ask > skip_limit)
|
||
|
ask = skip_limit;
|
||
|
get = (self->archive->client.skipper)(&self->archive->archive,
|
||
|
self->data, ask);
|
||
|
if (get == 0)
|
||
|
return (total);
|
||
|
request -= get;
|
||
|
total += get;
|
||
|
}
|
||
|
return total;
|
||
|
} else if (self->archive->client.seeker != NULL
|
||
|
&& request > 64 * 1024) {
|
||
|
/* If the client provided a seeker but not a skipper,
|
||
|
* we can use the seeker to skip forward.
|
||
|
*
|
||
|
* Note: This isn't always a good idea. The client
|
||
|
* skipper is allowed to skip by less than requested
|
||
|
* if it needs to maintain block alignment. The
|
||
|
* seeker is not allowed to play such games, so using
|
||
|
* the seeker here may be a performance loss compared
|
||
|
* to just reading and discarding. That's why we
|
||
|
* only do this for skips of over 64k.
|
||
|
*/
|
||
|
int64_t before = self->position;
|
||
|
int64_t after = (self->archive->client.seeker)(&self->archive->archive,
|
||
|
self->data, request, SEEK_CUR);
|
||
|
if (after != before + request)
|
||
|
return ARCHIVE_FATAL;
|
||
|
return after - before;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int64_t
|
||
|
client_seek_proxy(struct archive_read_filter *self, int64_t offset, int whence)
|
||
|
{
|
||
|
/* DO NOT use the skipper here! If we transparently handled
|
||
|
* forward seek here by using the skipper, that will break
|
||
|
* other libarchive code that assumes a successful forward
|
||
|
* seek means it can also seek backwards.
|
||
|
*/
|
||
|
if (self->archive->client.seeker == NULL)
|
||
|
return (ARCHIVE_FAILED);
|
||
|
return (self->archive->client.seeker)(&self->archive->archive,
|
||
|
self->data, offset, whence);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
client_close_proxy(struct archive_read_filter *self)
|
||
|
{
|
||
|
int r = ARCHIVE_OK;
|
||
|
|
||
|
if (self->archive->client.closer != NULL)
|
||
|
r = (self->archive->client.closer)((struct archive *)self->archive,
|
||
|
self->data);
|
||
|
return (r);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
archive_read_set_open_callback(struct archive *_a,
|
||
|
archive_open_callback *client_opener)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"archive_read_set_open_callback");
|
||
|
a->client.opener = client_opener;
|
||
|
return ARCHIVE_OK;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
archive_read_set_read_callback(struct archive *_a,
|
||
|
archive_read_callback *client_reader)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"archive_read_set_read_callback");
|
||
|
a->client.reader = client_reader;
|
||
|
return ARCHIVE_OK;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
archive_read_set_skip_callback(struct archive *_a,
|
||
|
archive_skip_callback *client_skipper)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"archive_read_set_skip_callback");
|
||
|
a->client.skipper = client_skipper;
|
||
|
return ARCHIVE_OK;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
archive_read_set_seek_callback(struct archive *_a,
|
||
|
archive_seek_callback *client_seeker)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"archive_read_set_seek_callback");
|
||
|
a->client.seeker = client_seeker;
|
||
|
return ARCHIVE_OK;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
archive_read_set_close_callback(struct archive *_a,
|
||
|
archive_close_callback *client_closer)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"archive_read_set_close_callback");
|
||
|
a->client.closer = client_closer;
|
||
|
return ARCHIVE_OK;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
archive_read_set_callback_data(struct archive *_a, void *client_data)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"archive_read_set_callback_data");
|
||
|
a->client.data = client_data;
|
||
|
return ARCHIVE_OK;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
archive_read_open1(struct archive *_a)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
struct archive_read_filter *filter;
|
||
|
int slot, e;
|
||
|
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"archive_read_open");
|
||
|
archive_clear_error(&a->archive);
|
||
|
|
||
|
if (a->client.reader == NULL) {
|
||
|
archive_set_error(&a->archive, EINVAL,
|
||
|
"No reader function provided to archive_read_open");
|
||
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
/* Open data source. */
|
||
|
if (a->client.opener != NULL) {
|
||
|
e =(a->client.opener)(&a->archive, a->client.data);
|
||
|
if (e != 0) {
|
||
|
/* If the open failed, call the closer to clean up. */
|
||
|
if (a->client.closer)
|
||
|
(a->client.closer)(&a->archive, a->client.data);
|
||
|
return (e);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
filter = calloc(1, sizeof(*filter));
|
||
|
if (filter == NULL)
|
||
|
return (ARCHIVE_FATAL);
|
||
|
filter->bidder = NULL;
|
||
|
filter->upstream = NULL;
|
||
|
filter->archive = a;
|
||
|
filter->data = a->client.data;
|
||
|
filter->read = client_read_proxy;
|
||
|
filter->skip = client_skip_proxy;
|
||
|
filter->seek = client_seek_proxy;
|
||
|
filter->close = client_close_proxy;
|
||
|
filter->name = "none";
|
||
|
filter->code = ARCHIVE_COMPRESSION_NONE;
|
||
|
a->filter = filter;
|
||
|
|
||
|
/* Build out the input pipeline. */
|
||
|
e = choose_filters(a);
|
||
|
if (e < ARCHIVE_WARN) {
|
||
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
slot = choose_format(a);
|
||
|
if (slot < 0) {
|
||
|
close_filters(a);
|
||
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
a->format = &(a->formats[slot]);
|
||
|
|
||
|
a->archive.state = ARCHIVE_STATE_HEADER;
|
||
|
return (e);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allow each registered stream transform to bid on whether
|
||
|
* it wants to handle this stream. Repeat until we've finished
|
||
|
* building the pipeline.
|
||
|
*/
|
||
|
static int
|
||
|
choose_filters(struct archive_read *a)
|
||
|
{
|
||
|
int number_bidders, i, bid, best_bid;
|
||
|
struct archive_read_filter_bidder *bidder, *best_bidder;
|
||
|
struct archive_read_filter *filter;
|
||
|
ssize_t avail;
|
||
|
int r;
|
||
|
|
||
|
for (;;) {
|
||
|
number_bidders = sizeof(a->bidders) / sizeof(a->bidders[0]);
|
||
|
|
||
|
best_bid = 0;
|
||
|
best_bidder = NULL;
|
||
|
|
||
|
bidder = a->bidders;
|
||
|
for (i = 0; i < number_bidders; i++, bidder++) {
|
||
|
if (bidder->bid != NULL) {
|
||
|
bid = (bidder->bid)(bidder, a->filter);
|
||
|
if (bid > best_bid) {
|
||
|
best_bid = bid;
|
||
|
best_bidder = bidder;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If no bidder, we're done. */
|
||
|
if (best_bidder == NULL) {
|
||
|
/* Verify the filter by asking it for some data. */
|
||
|
__archive_read_filter_ahead(a->filter, 1, &avail);
|
||
|
if (avail < 0) {
|
||
|
close_filters(a);
|
||
|
free_filters(a);
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
a->archive.compression_name = a->filter->name;
|
||
|
a->archive.compression_code = a->filter->code;
|
||
|
return (ARCHIVE_OK);
|
||
|
}
|
||
|
|
||
|
filter
|
||
|
= (struct archive_read_filter *)calloc(1, sizeof(*filter));
|
||
|
if (filter == NULL)
|
||
|
return (ARCHIVE_FATAL);
|
||
|
filter->bidder = best_bidder;
|
||
|
filter->archive = a;
|
||
|
filter->upstream = a->filter;
|
||
|
a->filter = filter;
|
||
|
r = (best_bidder->init)(a->filter);
|
||
|
if (r != ARCHIVE_OK) {
|
||
|
close_filters(a);
|
||
|
free_filters(a);
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read header of next entry.
|
||
|
*/
|
||
|
static int
|
||
|
_archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
int r1 = ARCHIVE_OK, r2;
|
||
|
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC,
|
||
|
ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
|
||
|
"archive_read_next_header");
|
||
|
|
||
|
archive_entry_clear(entry);
|
||
|
archive_clear_error(&a->archive);
|
||
|
|
||
|
/*
|
||
|
* If client didn't consume entire data, skip any remainder
|
||
|
* (This is especially important for GNU incremental directories.)
|
||
|
*/
|
||
|
if (a->archive.state == ARCHIVE_STATE_DATA) {
|
||
|
r1 = archive_read_data_skip(&a->archive);
|
||
|
if (r1 == ARCHIVE_EOF)
|
||
|
archive_set_error(&a->archive, EIO,
|
||
|
"Premature end-of-file.");
|
||
|
if (r1 == ARCHIVE_EOF || r1 == ARCHIVE_FATAL) {
|
||
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Record start-of-header offset in uncompressed stream. */
|
||
|
a->header_position = a->filter->position;
|
||
|
|
||
|
++_a->file_count;
|
||
|
r2 = (a->format->read_header)(a, entry);
|
||
|
|
||
|
/*
|
||
|
* EOF and FATAL are persistent at this layer. By
|
||
|
* modifying the state, we guarantee that future calls to
|
||
|
* read a header or read data will fail.
|
||
|
*/
|
||
|
switch (r2) {
|
||
|
case ARCHIVE_EOF:
|
||
|
a->archive.state = ARCHIVE_STATE_EOF;
|
||
|
--_a->file_count;/* Revert a file counter. */
|
||
|
break;
|
||
|
case ARCHIVE_OK:
|
||
|
a->archive.state = ARCHIVE_STATE_DATA;
|
||
|
break;
|
||
|
case ARCHIVE_WARN:
|
||
|
a->archive.state = ARCHIVE_STATE_DATA;
|
||
|
break;
|
||
|
case ARCHIVE_RETRY:
|
||
|
break;
|
||
|
case ARCHIVE_FATAL:
|
||
|
a->archive.state = ARCHIVE_STATE_FATAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
a->read_data_output_offset = 0;
|
||
|
a->read_data_remaining = 0;
|
||
|
/* EOF always wins; otherwise return the worst error. */
|
||
|
return (r2 < r1 || r2 == ARCHIVE_EOF) ? r2 : r1;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
_archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
|
||
|
{
|
||
|
int ret;
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
*entryp = NULL;
|
||
|
ret = _archive_read_next_header2(_a, a->entry);
|
||
|
*entryp = a->entry;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allow each registered format to bid on whether it wants to handle
|
||
|
* the next entry. Return index of winning bidder.
|
||
|
*/
|
||
|
static int
|
||
|
choose_format(struct archive_read *a)
|
||
|
{
|
||
|
int slots;
|
||
|
int i;
|
||
|
int bid, best_bid;
|
||
|
int best_bid_slot;
|
||
|
|
||
|
slots = sizeof(a->formats) / sizeof(a->formats[0]);
|
||
|
best_bid = -1;
|
||
|
best_bid_slot = -1;
|
||
|
|
||
|
/* Set up a->format for convenience of bidders. */
|
||
|
a->format = &(a->formats[0]);
|
||
|
for (i = 0; i < slots; i++, a->format++) {
|
||
|
if (a->format->bid) {
|
||
|
bid = (a->format->bid)(a, best_bid);
|
||
|
if (bid == ARCHIVE_FATAL)
|
||
|
return (ARCHIVE_FATAL);
|
||
|
if (a->filter->position != 0)
|
||
|
__archive_read_seek(a, 0, SEEK_SET);
|
||
|
if ((bid > best_bid) || (best_bid_slot < 0)) {
|
||
|
best_bid = bid;
|
||
|
best_bid_slot = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* There were no bidders; this is a serious programmer error
|
||
|
* and demands a quick and definitive abort.
|
||
|
*/
|
||
|
if (best_bid_slot < 0) {
|
||
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
|
||
|
"No formats registered");
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* There were bidders, but no non-zero bids; this means we
|
||
|
* can't support this stream.
|
||
|
*/
|
||
|
if (best_bid < 1) {
|
||
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
|
||
|
"Unrecognized archive format");
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
return (best_bid_slot);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the file offset (within the uncompressed data stream) where
|
||
|
* the last header started.
|
||
|
*/
|
||
|
int64_t
|
||
|
archive_read_header_position(struct archive *_a)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC,
|
||
|
ARCHIVE_STATE_ANY, "archive_read_header_position");
|
||
|
return (a->header_position);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read data from an archive entry, using a read(2)-style interface.
|
||
|
* This is a convenience routine that just calls
|
||
|
* archive_read_data_block and copies the results into the client
|
||
|
* buffer, filling any gaps with zero bytes. Clients using this
|
||
|
* API can be completely ignorant of sparse-file issues; sparse files
|
||
|
* will simply be padded with nulls.
|
||
|
*
|
||
|
* DO NOT intermingle calls to this function and archive_read_data_block
|
||
|
* to read a single entry body.
|
||
|
*/
|
||
|
ssize_t
|
||
|
archive_read_data(struct archive *_a, void *buff, size_t s)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
char *dest;
|
||
|
const void *read_buf;
|
||
|
size_t bytes_read;
|
||
|
size_t len;
|
||
|
int r;
|
||
|
|
||
|
bytes_read = 0;
|
||
|
dest = (char *)buff;
|
||
|
|
||
|
while (s > 0) {
|
||
|
if (a->read_data_remaining == 0) {
|
||
|
read_buf = a->read_data_block;
|
||
|
r = _archive_read_data_block(&a->archive, &read_buf,
|
||
|
&a->read_data_remaining, &a->read_data_offset);
|
||
|
a->read_data_block = read_buf;
|
||
|
if (r == ARCHIVE_EOF)
|
||
|
return (bytes_read);
|
||
|
/*
|
||
|
* Error codes are all negative, so the status
|
||
|
* return here cannot be confused with a valid
|
||
|
* byte count. (ARCHIVE_OK is zero.)
|
||
|
*/
|
||
|
if (r < ARCHIVE_OK)
|
||
|
return (r);
|
||
|
}
|
||
|
|
||
|
if (a->read_data_offset < a->read_data_output_offset) {
|
||
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
|
||
|
"Encountered out-of-order sparse blocks");
|
||
|
return (ARCHIVE_RETRY);
|
||
|
}
|
||
|
|
||
|
/* Compute the amount of zero padding needed. */
|
||
|
if (a->read_data_output_offset + s <
|
||
|
a->read_data_offset) {
|
||
|
len = s;
|
||
|
} else if (a->read_data_output_offset <
|
||
|
a->read_data_offset) {
|
||
|
len = a->read_data_offset -
|
||
|
a->read_data_output_offset;
|
||
|
} else
|
||
|
len = 0;
|
||
|
|
||
|
/* Add zeroes. */
|
||
|
memset(dest, 0, len);
|
||
|
s -= len;
|
||
|
a->read_data_output_offset += len;
|
||
|
dest += len;
|
||
|
bytes_read += len;
|
||
|
|
||
|
/* Copy data if there is any space left. */
|
||
|
if (s > 0) {
|
||
|
len = a->read_data_remaining;
|
||
|
if (len > s)
|
||
|
len = s;
|
||
|
memcpy(dest, a->read_data_block, len);
|
||
|
s -= len;
|
||
|
a->read_data_block += len;
|
||
|
a->read_data_remaining -= len;
|
||
|
a->read_data_output_offset += len;
|
||
|
a->read_data_offset += len;
|
||
|
dest += len;
|
||
|
bytes_read += len;
|
||
|
}
|
||
|
}
|
||
|
return (bytes_read);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Skip over all remaining data in this entry.
|
||
|
*/
|
||
|
int
|
||
|
archive_read_data_skip(struct archive *_a)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
int r;
|
||
|
const void *buff;
|
||
|
size_t size;
|
||
|
int64_t offset;
|
||
|
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_DATA,
|
||
|
"archive_read_data_skip");
|
||
|
|
||
|
if (a->format->read_data_skip != NULL)
|
||
|
r = (a->format->read_data_skip)(a);
|
||
|
else {
|
||
|
while ((r = archive_read_data_block(&a->archive,
|
||
|
&buff, &size, &offset))
|
||
|
== ARCHIVE_OK)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
if (r == ARCHIVE_EOF)
|
||
|
r = ARCHIVE_OK;
|
||
|
|
||
|
a->archive.state = ARCHIVE_STATE_HEADER;
|
||
|
return (r);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read the next block of entry data from the archive.
|
||
|
* This is a zero-copy interface; the client receives a pointer,
|
||
|
* size, and file offset of the next available block of data.
|
||
|
*
|
||
|
* Returns ARCHIVE_OK if the operation is successful, ARCHIVE_EOF if
|
||
|
* the end of entry is encountered.
|
||
|
*/
|
||
|
static int
|
||
|
_archive_read_data_block(struct archive *_a,
|
||
|
const void **buff, size_t *size, int64_t *offset)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_DATA,
|
||
|
"archive_read_data_block");
|
||
|
|
||
|
if (a->format->read_data == NULL) {
|
||
|
archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
|
||
|
"Internal error: "
|
||
|
"No format_read_data_block function registered");
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
return (a->format->read_data)(a, buff, size, offset);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
close_filters(struct archive_read *a)
|
||
|
{
|
||
|
struct archive_read_filter *f = a->filter;
|
||
|
int r = ARCHIVE_OK;
|
||
|
/* Close each filter in the pipeline. */
|
||
|
while (f != NULL) {
|
||
|
struct archive_read_filter *t = f->upstream;
|
||
|
if (!f->closed && f->close != NULL) {
|
||
|
int r1 = (f->close)(f);
|
||
|
f->closed = 1;
|
||
|
if (r1 < r)
|
||
|
r = r1;
|
||
|
}
|
||
|
free(f->buffer);
|
||
|
f->buffer = NULL;
|
||
|
f = t;
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
free_filters(struct archive_read *a)
|
||
|
{
|
||
|
while (a->filter != NULL) {
|
||
|
struct archive_read_filter *t = a->filter->upstream;
|
||
|
free(a->filter);
|
||
|
a->filter = t;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* return the count of # of filters in use
|
||
|
*/
|
||
|
static int
|
||
|
_archive_filter_count(struct archive *_a)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
struct archive_read_filter *p = a->filter;
|
||
|
int count = 0;
|
||
|
while(p) {
|
||
|
count++;
|
||
|
p = p->upstream;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Close the file and all I/O.
|
||
|
*/
|
||
|
static int
|
||
|
_archive_read_close(struct archive *_a)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
int r = ARCHIVE_OK, r1 = ARCHIVE_OK;
|
||
|
|
||
|
archive_check_magic(&a->archive, ARCHIVE_READ_MAGIC,
|
||
|
ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
|
||
|
if (a->archive.state == ARCHIVE_STATE_CLOSED)
|
||
|
return (ARCHIVE_OK);
|
||
|
archive_clear_error(&a->archive);
|
||
|
a->archive.state = ARCHIVE_STATE_CLOSED;
|
||
|
|
||
|
/* TODO: Clean up the formatters. */
|
||
|
|
||
|
/* Release the filter objects. */
|
||
|
r1 = close_filters(a);
|
||
|
if (r1 < r)
|
||
|
r = r1;
|
||
|
|
||
|
return (r);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Release memory and other resources.
|
||
|
*/
|
||
|
static int
|
||
|
_archive_read_free(struct archive *_a)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
int i, n;
|
||
|
int slots;
|
||
|
int r = ARCHIVE_OK;
|
||
|
|
||
|
if (_a == NULL)
|
||
|
return (ARCHIVE_OK);
|
||
|
archive_check_magic(_a, ARCHIVE_READ_MAGIC,
|
||
|
ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
|
||
|
if (a->archive.state != ARCHIVE_STATE_CLOSED
|
||
|
&& a->archive.state != ARCHIVE_STATE_FATAL)
|
||
|
r = archive_read_close(&a->archive);
|
||
|
|
||
|
/* Call cleanup functions registered by optional components. */
|
||
|
if (a->cleanup_archive_extract != NULL)
|
||
|
r = (a->cleanup_archive_extract)(a);
|
||
|
|
||
|
/* Cleanup format-specific data. */
|
||
|
slots = sizeof(a->formats) / sizeof(a->formats[0]);
|
||
|
for (i = 0; i < slots; i++) {
|
||
|
a->format = &(a->formats[i]);
|
||
|
if (a->formats[i].cleanup)
|
||
|
(a->formats[i].cleanup)(a);
|
||
|
}
|
||
|
|
||
|
/* Free the filters */
|
||
|
free_filters(a);
|
||
|
|
||
|
/* Release the bidder objects. */
|
||
|
n = sizeof(a->bidders)/sizeof(a->bidders[0]);
|
||
|
for (i = 0; i < n; i++) {
|
||
|
if (a->bidders[i].free != NULL) {
|
||
|
int r1 = (a->bidders[i].free)(&a->bidders[i]);
|
||
|
if (r1 < r)
|
||
|
r = r1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
archive_string_free(&a->archive.error_string);
|
||
|
if (a->entry)
|
||
|
archive_entry_free(a->entry);
|
||
|
a->archive.magic = 0;
|
||
|
__archive_clean(&a->archive);
|
||
|
free(a);
|
||
|
return (r);
|
||
|
}
|
||
|
|
||
|
static struct archive_read_filter *
|
||
|
get_filter(struct archive *_a, int n)
|
||
|
{
|
||
|
struct archive_read *a = (struct archive_read *)_a;
|
||
|
struct archive_read_filter *f = a->filter;
|
||
|
/* We use n == -1 for 'the last filter', which is always the client proxy. */
|
||
|
if (n == -1 && f != NULL) {
|
||
|
struct archive_read_filter *last = f;
|
||
|
f = f->upstream;
|
||
|
while (f != NULL) {
|
||
|
last = f;
|
||
|
f = f->upstream;
|
||
|
}
|
||
|
return (last);
|
||
|
}
|
||
|
if (n < 0)
|
||
|
return NULL;
|
||
|
while (n > 0 && f != NULL) {
|
||
|
f = f->upstream;
|
||
|
--n;
|
||
|
}
|
||
|
return (f);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
_archive_filter_code(struct archive *_a, int n)
|
||
|
{
|
||
|
struct archive_read_filter *f = get_filter(_a, n);
|
||
|
return f == NULL ? -1 : f->code;
|
||
|
}
|
||
|
|
||
|
static const char *
|
||
|
_archive_filter_name(struct archive *_a, int n)
|
||
|
{
|
||
|
struct archive_read_filter *f = get_filter(_a, n);
|
||
|
return f == NULL ? NULL : f->name;
|
||
|
}
|
||
|
|
||
|
static int64_t
|
||
|
_archive_filter_bytes(struct archive *_a, int n)
|
||
|
{
|
||
|
struct archive_read_filter *f = get_filter(_a, n);
|
||
|
return f == NULL ? -1 : f->position;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Used internally by read format handlers to register their bid and
|
||
|
* initialization functions.
|
||
|
*/
|
||
|
int
|
||
|
__archive_read_register_format(struct archive_read *a,
|
||
|
void *format_data,
|
||
|
const char *name,
|
||
|
int (*bid)(struct archive_read *, int),
|
||
|
int (*options)(struct archive_read *, const char *, const char *),
|
||
|
int (*read_header)(struct archive_read *, struct archive_entry *),
|
||
|
int (*read_data)(struct archive_read *, const void **, size_t *, int64_t *),
|
||
|
int (*read_data_skip)(struct archive_read *),
|
||
|
int (*cleanup)(struct archive_read *))
|
||
|
{
|
||
|
int i, number_slots;
|
||
|
|
||
|
archive_check_magic(&a->archive,
|
||
|
ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
|
||
|
"__archive_read_register_format");
|
||
|
|
||
|
number_slots = sizeof(a->formats) / sizeof(a->formats[0]);
|
||
|
|
||
|
for (i = 0; i < number_slots; i++) {
|
||
|
if (a->formats[i].bid == bid)
|
||
|
return (ARCHIVE_WARN); /* We've already installed */
|
||
|
if (a->formats[i].bid == NULL) {
|
||
|
a->formats[i].bid = bid;
|
||
|
a->formats[i].options = options;
|
||
|
a->formats[i].read_header = read_header;
|
||
|
a->formats[i].read_data = read_data;
|
||
|
a->formats[i].read_data_skip = read_data_skip;
|
||
|
a->formats[i].cleanup = cleanup;
|
||
|
a->formats[i].data = format_data;
|
||
|
a->formats[i].name = name;
|
||
|
return (ARCHIVE_OK);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
archive_set_error(&a->archive, ENOMEM,
|
||
|
"Not enough slots for format registration");
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Used internally by decompression routines to register their bid and
|
||
|
* initialization functions.
|
||
|
*/
|
||
|
int
|
||
|
__archive_read_get_bidder(struct archive_read *a,
|
||
|
struct archive_read_filter_bidder **bidder)
|
||
|
{
|
||
|
int i, number_slots;
|
||
|
|
||
|
number_slots = sizeof(a->bidders) / sizeof(a->bidders[0]);
|
||
|
|
||
|
for (i = 0; i < number_slots; i++) {
|
||
|
if (a->bidders[i].bid == NULL) {
|
||
|
memset(a->bidders + i, 0, sizeof(a->bidders[0]));
|
||
|
*bidder = (a->bidders + i);
|
||
|
return (ARCHIVE_OK);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
archive_set_error(&a->archive, ENOMEM,
|
||
|
"Not enough slots for filter registration");
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The next section implements the peek/consume internal I/O
|
||
|
* system used by archive readers. This system allows simple
|
||
|
* read-ahead for consumers while preserving zero-copy operation
|
||
|
* most of the time.
|
||
|
*
|
||
|
* The two key operations:
|
||
|
* * The read-ahead function returns a pointer to a block of data
|
||
|
* that satisfies a minimum request.
|
||
|
* * The consume function advances the file pointer.
|
||
|
*
|
||
|
* In the ideal case, filters generate blocks of data
|
||
|
* and __archive_read_ahead() just returns pointers directly into
|
||
|
* those blocks. Then __archive_read_consume() just bumps those
|
||
|
* pointers. Only if your request would span blocks does the I/O
|
||
|
* layer use a copy buffer to provide you with a contiguous block of
|
||
|
* data.
|
||
|
*
|
||
|
* A couple of useful idioms:
|
||
|
* * "I just want some data." Ask for 1 byte and pay attention to
|
||
|
* the "number of bytes available" from __archive_read_ahead().
|
||
|
* Consume whatever you actually use.
|
||
|
* * "I want to output a large block of data." As above, ask for 1 byte,
|
||
|
* emit all that's available (up to whatever limit you have), consume
|
||
|
* it all, then repeat until you're done. This effectively means that
|
||
|
* you're passing along the blocks that came from your provider.
|
||
|
* * "I want to peek ahead by a large amount." Ask for 4k or so, then
|
||
|
* double and repeat until you get an error or have enough. Note
|
||
|
* that the I/O layer will likely end up expanding its copy buffer
|
||
|
* to fit your request, so use this technique cautiously. This
|
||
|
* technique is used, for example, by some of the format tasting
|
||
|
* code that has uncertain look-ahead needs.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Looks ahead in the input stream:
|
||
|
* * If 'avail' pointer is provided, that returns number of bytes available
|
||
|
* in the current buffer, which may be much larger than requested.
|
||
|
* * If end-of-file, *avail gets set to zero.
|
||
|
* * If error, *avail gets error code.
|
||
|
* * If request can be met, returns pointer to data.
|
||
|
* * If minimum request cannot be met, returns NULL.
|
||
|
*
|
||
|
* Note: If you just want "some data", ask for 1 byte and pay attention
|
||
|
* to *avail, which will have the actual amount available. If you
|
||
|
* know exactly how many bytes you need, just ask for that and treat
|
||
|
* a NULL return as an error.
|
||
|
*
|
||
|
* Important: This does NOT move the file pointer. See
|
||
|
* __archive_read_consume() below.
|
||
|
*/
|
||
|
const void *
|
||
|
__archive_read_ahead(struct archive_read *a, size_t min, ssize_t *avail)
|
||
|
{
|
||
|
return (__archive_read_filter_ahead(a->filter, min, avail));
|
||
|
}
|
||
|
|
||
|
const void *
|
||
|
__archive_read_filter_ahead(struct archive_read_filter *filter,
|
||
|
size_t min, ssize_t *avail)
|
||
|
{
|
||
|
ssize_t bytes_read;
|
||
|
size_t tocopy;
|
||
|
|
||
|
if (filter->fatal) {
|
||
|
if (avail)
|
||
|
*avail = ARCHIVE_FATAL;
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Keep pulling more data until we can satisfy the request.
|
||
|
*/
|
||
|
for (;;) {
|
||
|
|
||
|
/*
|
||
|
* If we can satisfy from the copy buffer (and the
|
||
|
* copy buffer isn't empty), we're done. In particular,
|
||
|
* note that min == 0 is a perfectly well-defined
|
||
|
* request.
|
||
|
*/
|
||
|
if (filter->avail >= min && filter->avail > 0) {
|
||
|
if (avail != NULL)
|
||
|
*avail = filter->avail;
|
||
|
return (filter->next);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We can satisfy directly from client buffer if everything
|
||
|
* currently in the copy buffer is still in the client buffer.
|
||
|
*/
|
||
|
if (filter->client_total >= filter->client_avail + filter->avail
|
||
|
&& filter->client_avail + filter->avail >= min) {
|
||
|
/* "Roll back" to client buffer. */
|
||
|
filter->client_avail += filter->avail;
|
||
|
filter->client_next -= filter->avail;
|
||
|
/* Copy buffer is now empty. */
|
||
|
filter->avail = 0;
|
||
|
filter->next = filter->buffer;
|
||
|
/* Return data from client buffer. */
|
||
|
if (avail != NULL)
|
||
|
*avail = filter->client_avail;
|
||
|
return (filter->client_next);
|
||
|
}
|
||
|
|
||
|
/* Move data forward in copy buffer if necessary. */
|
||
|
if (filter->next > filter->buffer &&
|
||
|
filter->next + min > filter->buffer + filter->buffer_size) {
|
||
|
if (filter->avail > 0)
|
||
|
memmove(filter->buffer, filter->next, filter->avail);
|
||
|
filter->next = filter->buffer;
|
||
|
}
|
||
|
|
||
|
/* If we've used up the client data, get more. */
|
||
|
if (filter->client_avail <= 0) {
|
||
|
if (filter->end_of_file) {
|
||
|
if (avail != NULL)
|
||
|
*avail = 0;
|
||
|
return (NULL);
|
||
|
}
|
||
|
bytes_read = (filter->read)(filter,
|
||
|
&filter->client_buff);
|
||
|
if (bytes_read < 0) { /* Read error. */
|
||
|
filter->client_total = filter->client_avail = 0;
|
||
|
filter->client_next = filter->client_buff = NULL;
|
||
|
filter->fatal = 1;
|
||
|
if (avail != NULL)
|
||
|
*avail = ARCHIVE_FATAL;
|
||
|
return (NULL);
|
||
|
}
|
||
|
if (bytes_read == 0) { /* Premature end-of-file. */
|
||
|
filter->client_total = filter->client_avail = 0;
|
||
|
filter->client_next = filter->client_buff = NULL;
|
||
|
filter->end_of_file = 1;
|
||
|
/* Return whatever we do have. */
|
||
|
if (avail != NULL)
|
||
|
*avail = filter->avail;
|
||
|
return (NULL);
|
||
|
}
|
||
|
filter->client_total = bytes_read;
|
||
|
filter->client_avail = filter->client_total;
|
||
|
filter->client_next = filter->client_buff;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/*
|
||
|
* We can't satisfy the request from the copy
|
||
|
* buffer or the existing client data, so we
|
||
|
* need to copy more client data over to the
|
||
|
* copy buffer.
|
||
|
*/
|
||
|
|
||
|
/* Ensure the buffer is big enough. */
|
||
|
if (min > filter->buffer_size) {
|
||
|
size_t s, t;
|
||
|
char *p;
|
||
|
|
||
|
/* Double the buffer; watch for overflow. */
|
||
|
s = t = filter->buffer_size;
|
||
|
if (s == 0)
|
||
|
s = min;
|
||
|
while (s < min) {
|
||
|
t *= 2;
|
||
|
if (t <= s) { /* Integer overflow! */
|
||
|
archive_set_error(
|
||
|
&filter->archive->archive,
|
||
|
ENOMEM,
|
||
|
"Unable to allocate copy buffer");
|
||
|
filter->fatal = 1;
|
||
|
if (avail != NULL)
|
||
|
*avail = ARCHIVE_FATAL;
|
||
|
return (NULL);
|
||
|
}
|
||
|
s = t;
|
||
|
}
|
||
|
/* Now s >= min, so allocate a new buffer. */
|
||
|
p = (char *)malloc(s);
|
||
|
if (p == NULL) {
|
||
|
archive_set_error(
|
||
|
&filter->archive->archive,
|
||
|
ENOMEM,
|
||
|
"Unable to allocate copy buffer");
|
||
|
filter->fatal = 1;
|
||
|
if (avail != NULL)
|
||
|
*avail = ARCHIVE_FATAL;
|
||
|
return (NULL);
|
||
|
}
|
||
|
/* Move data into newly-enlarged buffer. */
|
||
|
if (filter->avail > 0)
|
||
|
memmove(p, filter->next, filter->avail);
|
||
|
free(filter->buffer);
|
||
|
filter->next = filter->buffer = p;
|
||
|
filter->buffer_size = s;
|
||
|
}
|
||
|
|
||
|
/* We can add client data to copy buffer. */
|
||
|
/* First estimate: copy to fill rest of buffer. */
|
||
|
tocopy = (filter->buffer + filter->buffer_size)
|
||
|
- (filter->next + filter->avail);
|
||
|
/* Don't waste time buffering more than we need to. */
|
||
|
if (tocopy + filter->avail > min)
|
||
|
tocopy = min - filter->avail;
|
||
|
/* Don't copy more than is available. */
|
||
|
if (tocopy > filter->client_avail)
|
||
|
tocopy = filter->client_avail;
|
||
|
|
||
|
memcpy(filter->next + filter->avail, filter->client_next,
|
||
|
tocopy);
|
||
|
/* Remove this data from client buffer. */
|
||
|
filter->client_next += tocopy;
|
||
|
filter->client_avail -= tocopy;
|
||
|
/* add it to copy buffer. */
|
||
|
filter->avail += tocopy;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Move the file pointer forward.
|
||
|
*/
|
||
|
int64_t
|
||
|
__archive_read_consume(struct archive_read *a, int64_t request)
|
||
|
{
|
||
|
return (__archive_read_filter_consume(a->filter, request));
|
||
|
}
|
||
|
|
||
|
int64_t
|
||
|
__archive_read_filter_consume(struct archive_read_filter * filter,
|
||
|
int64_t request)
|
||
|
{
|
||
|
int64_t skipped;
|
||
|
|
||
|
if (request == 0)
|
||
|
return 0;
|
||
|
|
||
|
skipped = advance_file_pointer(filter, request);
|
||
|
if (skipped == request)
|
||
|
return (skipped);
|
||
|
/* We hit EOF before we satisfied the skip request. */
|
||
|
if (skipped < 0) /* Map error code to 0 for error message below. */
|
||
|
skipped = 0;
|
||
|
archive_set_error(&filter->archive->archive,
|
||
|
ARCHIVE_ERRNO_MISC,
|
||
|
"Truncated input file (needed %jd bytes, only %jd available)",
|
||
|
(intmax_t)request, (intmax_t)skipped);
|
||
|
return (ARCHIVE_FATAL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Advance the file pointer by the amount requested.
|
||
|
* Returns the amount actually advanced, which may be less than the
|
||
|
* request if EOF is encountered first.
|
||
|
* Returns a negative value if there's an I/O error.
|
||
|
*/
|
||
|
static int64_t
|
||
|
advance_file_pointer(struct archive_read_filter *filter, int64_t request)
|
||
|
{
|
||
|
int64_t bytes_skipped, total_bytes_skipped = 0;
|
||
|
ssize_t bytes_read;
|
||
|
size_t min;
|
||
|
|
||
|
if (filter->fatal)
|
||
|
return (-1);
|
||
|
|
||
|
/* Use up the copy buffer first. */
|
||
|
if (filter->avail > 0) {
|
||
|
min = minimum(request, (int64_t)filter->avail);
|
||
|
filter->next += min;
|
||
|
filter->avail -= min;
|
||
|
request -= min;
|
||
|
filter->position += min;
|
||
|
total_bytes_skipped += min;
|
||
|
}
|
||
|
|
||
|
/* Then use up the client buffer. */
|
||
|
if (filter->client_avail > 0) {
|
||
|
min = minimum(request, (int64_t)filter->client_avail);
|
||
|
filter->client_next += min;
|
||
|
filter->client_avail -= min;
|
||
|
request -= min;
|
||
|
filter->position += min;
|
||
|
total_bytes_skipped += min;
|
||
|
}
|
||
|
if (request == 0)
|
||
|
return (total_bytes_skipped);
|
||
|
|
||
|
/* If there's an optimized skip function, use it. */
|
||
|
if (filter->skip != NULL) {
|
||
|
bytes_skipped = (filter->skip)(filter, request);
|
||
|
if (bytes_skipped < 0) { /* error */
|
||
|
filter->fatal = 1;
|
||
|
return (bytes_skipped);
|
||
|
}
|
||
|
filter->position += bytes_skipped;
|
||
|
total_bytes_skipped += bytes_skipped;
|
||
|
request -= bytes_skipped;
|
||
|
if (request == 0)
|
||
|
return (total_bytes_skipped);
|
||
|
}
|
||
|
|
||
|
/* Use ordinary reads as necessary to complete the request. */
|
||
|
for (;;) {
|
||
|
bytes_read = (filter->read)(filter, &filter->client_buff);
|
||
|
if (bytes_read < 0) {
|
||
|
filter->client_buff = NULL;
|
||
|
filter->fatal = 1;
|
||
|
return (bytes_read);
|
||
|
}
|
||
|
|
||
|
if (bytes_read == 0) {
|
||
|
filter->client_buff = NULL;
|
||
|
filter->end_of_file = 1;
|
||
|
return (total_bytes_skipped);
|
||
|
}
|
||
|
|
||
|
if (bytes_read >= request) {
|
||
|
filter->client_next =
|
||
|
((const char *)filter->client_buff) + request;
|
||
|
filter->client_avail = bytes_read - request;
|
||
|
filter->client_total = bytes_read;
|
||
|
total_bytes_skipped += request;
|
||
|
filter->position += request;
|
||
|
return (total_bytes_skipped);
|
||
|
}
|
||
|
|
||
|
filter->position += bytes_read;
|
||
|
total_bytes_skipped += bytes_read;
|
||
|
request -= bytes_read;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns ARCHIVE_FAILED if seeking isn't supported.
|
||
|
*/
|
||
|
int64_t
|
||
|
__archive_read_seek(struct archive_read *a, int64_t offset, int whence)
|
||
|
{
|
||
|
return __archive_read_filter_seek(a->filter, offset, whence);
|
||
|
}
|
||
|
|
||
|
int64_t
|
||
|
__archive_read_filter_seek(struct archive_read_filter *filter, int64_t offset, int whence)
|
||
|
{
|
||
|
int64_t r;
|
||
|
|
||
|
if (filter->closed || filter->fatal)
|
||
|
return (ARCHIVE_FATAL);
|
||
|
if (filter->seek == NULL)
|
||
|
return (ARCHIVE_FAILED);
|
||
|
r = filter->seek(filter, offset, whence);
|
||
|
if (r >= 0) {
|
||
|
/*
|
||
|
* Ouch. Clearing the buffer like this hurts, especially
|
||
|
* at bid time. A lot of our efficiency at bid time comes
|
||
|
* from having bidders reuse the data we've already read.
|
||
|
*
|
||
|
* TODO: If the seek request is in data we already
|
||
|
* have, then don't call the seek callback.
|
||
|
*
|
||
|
* TODO: Zip seeks to end-of-file at bid time. If
|
||
|
* other formats also start doing this, we may need to
|
||
|
* find a way for clients to fudge the seek offset to
|
||
|
* a block boundary.
|
||
|
*
|
||
|
* Hmmm... If whence was SEEK_END, we know the file
|
||
|
* size is (r - offset). Can we use that to simplify
|
||
|
* the TODO items above?
|
||
|
*/
|
||
|
filter->avail = filter->client_avail = 0;
|
||
|
filter->next = filter->buffer;
|
||
|
filter->position = r;
|
||
|
filter->end_of_file = 0;
|
||
|
}
|
||
|
return r;
|
||
|
}
|