702 lines
21 KiB
C
702 lines
21 KiB
C
|
/*-
|
|||
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|||
|
* All rights reserved.
|
|||
|
*
|
|||
|
* This code is derived from software contributed to The NetBSD Foundation
|
|||
|
* by Matt Thomas <matt@3am-software.com>.
|
|||
|
*
|
|||
|
* Redistribution and use in source and binary forms, with or without
|
|||
|
* modification, are permitted provided that the following conditions
|
|||
|
* are met:
|
|||
|
* 1. Redistributions of source code must retain the above copyright
|
|||
|
* notice, this list of conditions and the following disclaimer.
|
|||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|||
|
* notice, this list of conditions and the following disclaimer in the
|
|||
|
* documentation and/or other materials provided with the distribution.
|
|||
|
*
|
|||
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|||
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|||
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|||
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|||
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|||
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|||
|
* POSSIBILITY OF SUCH DAMAGE.
|
|||
|
*
|
|||
|
* Based on: NetBSD: rb.c,v 1.6 2010/04/30 13:58:09 joerg Exp
|
|||
|
*/
|
|||
|
|
|||
|
#include "archive_platform.h"
|
|||
|
|
|||
|
#include <stddef.h>
|
|||
|
|
|||
|
#include "archive_rb.h"
|
|||
|
|
|||
|
/* Keep in sync with archive_rb.h */
|
|||
|
#define RB_DIR_LEFT 0
|
|||
|
#define RB_DIR_RIGHT 1
|
|||
|
#define RB_DIR_OTHER 1
|
|||
|
#define rb_left rb_nodes[RB_DIR_LEFT]
|
|||
|
#define rb_right rb_nodes[RB_DIR_RIGHT]
|
|||
|
|
|||
|
#define RB_FLAG_POSITION 0x2
|
|||
|
#define RB_FLAG_RED 0x1
|
|||
|
#define RB_FLAG_MASK (RB_FLAG_POSITION|RB_FLAG_RED)
|
|||
|
#define RB_FATHER(rb) \
|
|||
|
((struct archive_rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
|
|||
|
#define RB_SET_FATHER(rb, father) \
|
|||
|
((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
|
|||
|
|
|||
|
#define RB_SENTINEL_P(rb) ((rb) == NULL)
|
|||
|
#define RB_LEFT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_left)
|
|||
|
#define RB_RIGHT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_right)
|
|||
|
#define RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
|
|||
|
#define RB_CHILDLESS_P(rb) \
|
|||
|
(RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
|
|||
|
#define RB_TWOCHILDREN_P(rb) \
|
|||
|
(!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
|
|||
|
|
|||
|
#define RB_POSITION(rb) \
|
|||
|
(((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
|
|||
|
#define RB_RIGHT_P(rb) (RB_POSITION(rb) == RB_DIR_RIGHT)
|
|||
|
#define RB_LEFT_P(rb) (RB_POSITION(rb) == RB_DIR_LEFT)
|
|||
|
#define RB_RED_P(rb) (!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
|
|||
|
#define RB_BLACK_P(rb) (RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
|
|||
|
#define RB_MARK_RED(rb) ((void)((rb)->rb_info |= RB_FLAG_RED))
|
|||
|
#define RB_MARK_BLACK(rb) ((void)((rb)->rb_info &= ~RB_FLAG_RED))
|
|||
|
#define RB_INVERT_COLOR(rb) ((void)((rb)->rb_info ^= RB_FLAG_RED))
|
|||
|
#define RB_ROOT_P(rbt, rb) ((rbt)->rbt_root == (rb))
|
|||
|
#define RB_SET_POSITION(rb, position) \
|
|||
|
((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
|
|||
|
((rb)->rb_info &= ~RB_FLAG_POSITION)))
|
|||
|
#define RB_ZERO_PROPERTIES(rb) ((void)((rb)->rb_info &= ~RB_FLAG_MASK))
|
|||
|
#define RB_COPY_PROPERTIES(dst, src) \
|
|||
|
((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
|
|||
|
#define RB_SWAP_PROPERTIES(a, b) do { \
|
|||
|
uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
|
|||
|
(a)->rb_info ^= xorinfo; \
|
|||
|
(b)->rb_info ^= xorinfo; \
|
|||
|
} while (/*CONSTCOND*/ 0)
|
|||
|
|
|||
|
static void __archive_rb_tree_insert_rebalance(struct archive_rb_tree *,
|
|||
|
struct archive_rb_node *);
|
|||
|
static void __archive_rb_tree_removal_rebalance(struct archive_rb_tree *,
|
|||
|
struct archive_rb_node *, unsigned int);
|
|||
|
|
|||
|
#define RB_SENTINEL_NODE NULL
|
|||
|
|
|||
|
#define T 1
|
|||
|
#define F 0
|
|||
|
|
|||
|
void
|
|||
|
__archive_rb_tree_init(struct archive_rb_tree *rbt,
|
|||
|
const struct archive_rb_tree_ops *ops)
|
|||
|
{
|
|||
|
rbt->rbt_ops = ops;
|
|||
|
*((const struct archive_rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
|
|||
|
}
|
|||
|
|
|||
|
struct archive_rb_node *
|
|||
|
__archive_rb_tree_find_node(struct archive_rb_tree *rbt, const void *key)
|
|||
|
{
|
|||
|
archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
|
|||
|
struct archive_rb_node *parent = rbt->rbt_root;
|
|||
|
|
|||
|
while (!RB_SENTINEL_P(parent)) {
|
|||
|
const signed int diff = (*compare_key)(parent, key);
|
|||
|
if (diff == 0)
|
|||
|
return parent;
|
|||
|
parent = parent->rb_nodes[diff > 0];
|
|||
|
}
|
|||
|
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
struct archive_rb_node *
|
|||
|
__archive_rb_tree_find_node_geq(struct archive_rb_tree *rbt, const void *key)
|
|||
|
{
|
|||
|
archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
|
|||
|
struct archive_rb_node *parent = rbt->rbt_root;
|
|||
|
struct archive_rb_node *last = NULL;
|
|||
|
|
|||
|
while (!RB_SENTINEL_P(parent)) {
|
|||
|
const signed int diff = (*compare_key)(parent, key);
|
|||
|
if (diff == 0)
|
|||
|
return parent;
|
|||
|
if (diff < 0)
|
|||
|
last = parent;
|
|||
|
parent = parent->rb_nodes[diff > 0];
|
|||
|
}
|
|||
|
|
|||
|
return last;
|
|||
|
}
|
|||
|
|
|||
|
struct archive_rb_node *
|
|||
|
__archive_rb_tree_find_node_leq(struct archive_rb_tree *rbt, const void *key)
|
|||
|
{
|
|||
|
archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
|
|||
|
struct archive_rb_node *parent = rbt->rbt_root;
|
|||
|
struct archive_rb_node *last = NULL;
|
|||
|
|
|||
|
while (!RB_SENTINEL_P(parent)) {
|
|||
|
const signed int diff = (*compare_key)(parent, key);
|
|||
|
if (diff == 0)
|
|||
|
return parent;
|
|||
|
if (diff > 0)
|
|||
|
last = parent;
|
|||
|
parent = parent->rb_nodes[diff > 0];
|
|||
|
}
|
|||
|
|
|||
|
return last;
|
|||
|
}
|
|||
|
|
|||
|
int
|
|||
|
__archive_rb_tree_insert_node(struct archive_rb_tree *rbt,
|
|||
|
struct archive_rb_node *self)
|
|||
|
{
|
|||
|
archive_rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
|
|||
|
struct archive_rb_node *parent, *tmp;
|
|||
|
unsigned int position;
|
|||
|
int rebalance;
|
|||
|
|
|||
|
tmp = rbt->rbt_root;
|
|||
|
/*
|
|||
|
* This is a hack. Because rbt->rbt_root is just a
|
|||
|
* struct archive_rb_node *, just like rb_node->rb_nodes[RB_DIR_LEFT],
|
|||
|
* we can use this fact to avoid a lot of tests for root and know
|
|||
|
* that even at root, updating
|
|||
|
* RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
|
|||
|
* update rbt->rbt_root.
|
|||
|
*/
|
|||
|
parent = (struct archive_rb_node *)(void *)&rbt->rbt_root;
|
|||
|
position = RB_DIR_LEFT;
|
|||
|
|
|||
|
/*
|
|||
|
* Find out where to place this new leaf.
|
|||
|
*/
|
|||
|
while (!RB_SENTINEL_P(tmp)) {
|
|||
|
const signed int diff = (*compare_nodes)(tmp, self);
|
|||
|
if (diff == 0) {
|
|||
|
/*
|
|||
|
* Node already exists; don't insert.
|
|||
|
*/
|
|||
|
return F;
|
|||
|
}
|
|||
|
parent = tmp;
|
|||
|
position = (diff > 0);
|
|||
|
tmp = parent->rb_nodes[position];
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* Initialize the node and insert as a leaf into the tree.
|
|||
|
*/
|
|||
|
RB_SET_FATHER(self, parent);
|
|||
|
RB_SET_POSITION(self, position);
|
|||
|
if (parent == (struct archive_rb_node *)(void *)&rbt->rbt_root) {
|
|||
|
RB_MARK_BLACK(self); /* root is always black */
|
|||
|
rebalance = F;
|
|||
|
} else {
|
|||
|
/*
|
|||
|
* All new nodes are colored red. We only need to rebalance
|
|||
|
* if our parent is also red.
|
|||
|
*/
|
|||
|
RB_MARK_RED(self);
|
|||
|
rebalance = RB_RED_P(parent);
|
|||
|
}
|
|||
|
self->rb_left = parent->rb_nodes[position];
|
|||
|
self->rb_right = parent->rb_nodes[position];
|
|||
|
parent->rb_nodes[position] = self;
|
|||
|
|
|||
|
/*
|
|||
|
* Rebalance tree after insertion
|
|||
|
*/
|
|||
|
if (rebalance)
|
|||
|
__archive_rb_tree_insert_rebalance(rbt, self);
|
|||
|
|
|||
|
return T;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* Swap the location and colors of 'self' and its child @ which. The child
|
|||
|
* can not be a sentinel node. This is our rotation function. However,
|
|||
|
* since it preserves coloring, it great simplifies both insertion and
|
|||
|
* removal since rotation almost always involves the exchanging of colors
|
|||
|
* as a separate step.
|
|||
|
*/
|
|||
|
/*ARGSUSED*/
|
|||
|
static void
|
|||
|
__archive_rb_tree_reparent_nodes(
|
|||
|
struct archive_rb_node *old_father, const unsigned int which)
|
|||
|
{
|
|||
|
const unsigned int other = which ^ RB_DIR_OTHER;
|
|||
|
struct archive_rb_node * const grandpa = RB_FATHER(old_father);
|
|||
|
struct archive_rb_node * const old_child = old_father->rb_nodes[which];
|
|||
|
struct archive_rb_node * const new_father = old_child;
|
|||
|
struct archive_rb_node * const new_child = old_father;
|
|||
|
|
|||
|
/*
|
|||
|
* Exchange descendant linkages.
|
|||
|
*/
|
|||
|
grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
|
|||
|
new_child->rb_nodes[which] = old_child->rb_nodes[other];
|
|||
|
new_father->rb_nodes[other] = new_child;
|
|||
|
|
|||
|
/*
|
|||
|
* Update ancestor linkages
|
|||
|
*/
|
|||
|
RB_SET_FATHER(new_father, grandpa);
|
|||
|
RB_SET_FATHER(new_child, new_father);
|
|||
|
|
|||
|
/*
|
|||
|
* Exchange properties between new_father and new_child. The only
|
|||
|
* change is that new_child's position is now on the other side.
|
|||
|
*/
|
|||
|
RB_SWAP_PROPERTIES(new_father, new_child);
|
|||
|
RB_SET_POSITION(new_child, other);
|
|||
|
|
|||
|
/*
|
|||
|
* Make sure to reparent the new child to ourself.
|
|||
|
*/
|
|||
|
if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
|
|||
|
RB_SET_FATHER(new_child->rb_nodes[which], new_child);
|
|||
|
RB_SET_POSITION(new_child->rb_nodes[which], which);
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
__archive_rb_tree_insert_rebalance(struct archive_rb_tree *rbt,
|
|||
|
struct archive_rb_node *self)
|
|||
|
{
|
|||
|
struct archive_rb_node * father = RB_FATHER(self);
|
|||
|
struct archive_rb_node * grandpa;
|
|||
|
struct archive_rb_node * uncle;
|
|||
|
unsigned int which;
|
|||
|
unsigned int other;
|
|||
|
|
|||
|
for (;;) {
|
|||
|
/*
|
|||
|
* We are red and our parent is red, therefore we must have a
|
|||
|
* grandfather and he must be black.
|
|||
|
*/
|
|||
|
grandpa = RB_FATHER(father);
|
|||
|
which = (father == grandpa->rb_right);
|
|||
|
other = which ^ RB_DIR_OTHER;
|
|||
|
uncle = grandpa->rb_nodes[other];
|
|||
|
|
|||
|
if (RB_BLACK_P(uncle))
|
|||
|
break;
|
|||
|
|
|||
|
/*
|
|||
|
* Case 1: our uncle is red
|
|||
|
* Simply invert the colors of our parent and
|
|||
|
* uncle and make our grandparent red. And
|
|||
|
* then solve the problem up at his level.
|
|||
|
*/
|
|||
|
RB_MARK_BLACK(uncle);
|
|||
|
RB_MARK_BLACK(father);
|
|||
|
if (RB_ROOT_P(rbt, grandpa)) {
|
|||
|
/*
|
|||
|
* If our grandpa is root, don't bother
|
|||
|
* setting him to red, just return.
|
|||
|
*/
|
|||
|
return;
|
|||
|
}
|
|||
|
RB_MARK_RED(grandpa);
|
|||
|
self = grandpa;
|
|||
|
father = RB_FATHER(self);
|
|||
|
if (RB_BLACK_P(father)) {
|
|||
|
/*
|
|||
|
* If our greatgrandpa is black, we're done.
|
|||
|
*/
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* Case 2&3: our uncle is black.
|
|||
|
*/
|
|||
|
if (self == father->rb_nodes[other]) {
|
|||
|
/*
|
|||
|
* Case 2: we are on the same side as our uncle
|
|||
|
* Swap ourselves with our parent so this case
|
|||
|
* becomes case 3. Basically our parent becomes our
|
|||
|
* child.
|
|||
|
*/
|
|||
|
__archive_rb_tree_reparent_nodes(father, other);
|
|||
|
}
|
|||
|
/*
|
|||
|
* Case 3: we are opposite a child of a black uncle.
|
|||
|
* Swap our parent and grandparent. Since our grandfather
|
|||
|
* is black, our father will become black and our new sibling
|
|||
|
* (former grandparent) will become red.
|
|||
|
*/
|
|||
|
__archive_rb_tree_reparent_nodes(grandpa, which);
|
|||
|
|
|||
|
/*
|
|||
|
* Final step: Set the root to black.
|
|||
|
*/
|
|||
|
RB_MARK_BLACK(rbt->rbt_root);
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
__archive_rb_tree_prune_node(struct archive_rb_tree *rbt,
|
|||
|
struct archive_rb_node *self, int rebalance)
|
|||
|
{
|
|||
|
const unsigned int which = RB_POSITION(self);
|
|||
|
struct archive_rb_node *father = RB_FATHER(self);
|
|||
|
|
|||
|
/*
|
|||
|
* Since we are childless, we know that self->rb_left is pointing
|
|||
|
* to the sentinel node.
|
|||
|
*/
|
|||
|
father->rb_nodes[which] = self->rb_left;
|
|||
|
|
|||
|
/*
|
|||
|
* Rebalance if requested.
|
|||
|
*/
|
|||
|
if (rebalance)
|
|||
|
__archive_rb_tree_removal_rebalance(rbt, father, which);
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* When deleting an interior node
|
|||
|
*/
|
|||
|
static void
|
|||
|
__archive_rb_tree_swap_prune_and_rebalance(struct archive_rb_tree *rbt,
|
|||
|
struct archive_rb_node *self, struct archive_rb_node *standin)
|
|||
|
{
|
|||
|
const unsigned int standin_which = RB_POSITION(standin);
|
|||
|
unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
|
|||
|
struct archive_rb_node *standin_son;
|
|||
|
struct archive_rb_node *standin_father = RB_FATHER(standin);
|
|||
|
int rebalance = RB_BLACK_P(standin);
|
|||
|
|
|||
|
if (standin_father == self) {
|
|||
|
/*
|
|||
|
* As a child of self, any childen would be opposite of
|
|||
|
* our parent.
|
|||
|
*/
|
|||
|
standin_son = standin->rb_nodes[standin_which];
|
|||
|
} else {
|
|||
|
/*
|
|||
|
* Since we aren't a child of self, any childen would be
|
|||
|
* on the same side as our parent.
|
|||
|
*/
|
|||
|
standin_son = standin->rb_nodes[standin_other];
|
|||
|
}
|
|||
|
|
|||
|
if (RB_RED_P(standin_son)) {
|
|||
|
/*
|
|||
|
* We know we have a red child so if we flip it to black
|
|||
|
* we don't have to rebalance.
|
|||
|
*/
|
|||
|
RB_MARK_BLACK(standin_son);
|
|||
|
rebalance = F;
|
|||
|
|
|||
|
if (standin_father != self) {
|
|||
|
/*
|
|||
|
* Change the son's parentage to point to his grandpa.
|
|||
|
*/
|
|||
|
RB_SET_FATHER(standin_son, standin_father);
|
|||
|
RB_SET_POSITION(standin_son, standin_which);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (standin_father == self) {
|
|||
|
/*
|
|||
|
* If we are about to delete the standin's father, then when
|
|||
|
* we call rebalance, we need to use ourselves as our father.
|
|||
|
* Otherwise remember our original father. Also, sincef we are
|
|||
|
* our standin's father we only need to reparent the standin's
|
|||
|
* brother.
|
|||
|
*
|
|||
|
* | R --> S |
|
|||
|
* | Q S --> Q T |
|
|||
|
* | t --> |
|
|||
|
*
|
|||
|
* Have our son/standin adopt his brother as his new son.
|
|||
|
*/
|
|||
|
standin_father = standin;
|
|||
|
} else {
|
|||
|
/*
|
|||
|
* | R --> S . |
|
|||
|
* | / \ | T --> / \ | / |
|
|||
|
* | ..... | S --> ..... | T |
|
|||
|
*
|
|||
|
* Sever standin's connection to his father.
|
|||
|
*/
|
|||
|
standin_father->rb_nodes[standin_which] = standin_son;
|
|||
|
/*
|
|||
|
* Adopt the far son.
|
|||
|
*/
|
|||
|
standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
|
|||
|
RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
|
|||
|
/*
|
|||
|
* Use standin_other because we need to preserve standin_which
|
|||
|
* for the removal_rebalance.
|
|||
|
*/
|
|||
|
standin_other = standin_which;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* Move the only remaining son to our standin. If our standin is our
|
|||
|
* son, this will be the only son needed to be moved.
|
|||
|
*/
|
|||
|
standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
|
|||
|
RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
|
|||
|
|
|||
|
/*
|
|||
|
* Now copy the result of self to standin and then replace
|
|||
|
* self with standin in the tree.
|
|||
|
*/
|
|||
|
RB_COPY_PROPERTIES(standin, self);
|
|||
|
RB_SET_FATHER(standin, RB_FATHER(self));
|
|||
|
RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
|
|||
|
|
|||
|
if (rebalance)
|
|||
|
__archive_rb_tree_removal_rebalance(rbt, standin_father, standin_which);
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* We could do this by doing
|
|||
|
* __archive_rb_tree_node_swap(rbt, self, which);
|
|||
|
* __archive_rb_tree_prune_node(rbt, self, F);
|
|||
|
*
|
|||
|
* But it's more efficient to just evalate and recolor the child.
|
|||
|
*/
|
|||
|
static void
|
|||
|
__archive_rb_tree_prune_blackred_branch(
|
|||
|
struct archive_rb_node *self, unsigned int which)
|
|||
|
{
|
|||
|
struct archive_rb_node *father = RB_FATHER(self);
|
|||
|
struct archive_rb_node *son = self->rb_nodes[which];
|
|||
|
|
|||
|
/*
|
|||
|
* Remove ourselves from the tree and give our former child our
|
|||
|
* properties (position, color, root).
|
|||
|
*/
|
|||
|
RB_COPY_PROPERTIES(son, self);
|
|||
|
father->rb_nodes[RB_POSITION(son)] = son;
|
|||
|
RB_SET_FATHER(son, father);
|
|||
|
}
|
|||
|
/*
|
|||
|
*
|
|||
|
*/
|
|||
|
void
|
|||
|
__archive_rb_tree_remove_node(struct archive_rb_tree *rbt,
|
|||
|
struct archive_rb_node *self)
|
|||
|
{
|
|||
|
struct archive_rb_node *standin;
|
|||
|
unsigned int which;
|
|||
|
|
|||
|
/*
|
|||
|
* In the following diagrams, we (the node to be removed) are S. Red
|
|||
|
* nodes are lowercase. T could be either red or black.
|
|||
|
*
|
|||
|
* Remember the major axiom of the red-black tree: the number of
|
|||
|
* black nodes from the root to each leaf is constant across all
|
|||
|
* leaves, only the number of red nodes varies.
|
|||
|
*
|
|||
|
* Thus removing a red leaf doesn't require any other changes to a
|
|||
|
* red-black tree. So if we must remove a node, attempt to rearrange
|
|||
|
* the tree so we can remove a red node.
|
|||
|
*
|
|||
|
* The simpliest case is a childless red node or a childless root node:
|
|||
|
*
|
|||
|
* | T --> T | or | R --> * |
|
|||
|
* | s --> * |
|
|||
|
*/
|
|||
|
if (RB_CHILDLESS_P(self)) {
|
|||
|
const int rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
|
|||
|
__archive_rb_tree_prune_node(rbt, self, rebalance);
|
|||
|
return;
|
|||
|
}
|
|||
|
if (!RB_TWOCHILDREN_P(self)) {
|
|||
|
/*
|
|||
|
* The next simpliest case is the node we are deleting is
|
|||
|
* black and has one red child.
|
|||
|
*
|
|||
|
* | T --> T --> T |
|
|||
|
* | S --> R --> R |
|
|||
|
* | r --> s --> * |
|
|||
|
*/
|
|||
|
which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
|
|||
|
__archive_rb_tree_prune_blackred_branch(self, which);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* We invert these because we prefer to remove from the inside of
|
|||
|
* the tree.
|
|||
|
*/
|
|||
|
which = RB_POSITION(self) ^ RB_DIR_OTHER;
|
|||
|
|
|||
|
/*
|
|||
|
* Let's find the node closes to us opposite of our parent
|
|||
|
* Now swap it with ourself, "prune" it, and rebalance, if needed.
|
|||
|
*/
|
|||
|
standin = __archive_rb_tree_iterate(rbt, self, which);
|
|||
|
__archive_rb_tree_swap_prune_and_rebalance(rbt, self, standin);
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
__archive_rb_tree_removal_rebalance(struct archive_rb_tree *rbt,
|
|||
|
struct archive_rb_node *parent, unsigned int which)
|
|||
|
{
|
|||
|
|
|||
|
while (RB_BLACK_P(parent->rb_nodes[which])) {
|
|||
|
unsigned int other = which ^ RB_DIR_OTHER;
|
|||
|
struct archive_rb_node *brother = parent->rb_nodes[other];
|
|||
|
|
|||
|
/*
|
|||
|
* For cases 1, 2a, and 2b, our brother's children must
|
|||
|
* be black and our father must be black
|
|||
|
*/
|
|||
|
if (RB_BLACK_P(parent)
|
|||
|
&& RB_BLACK_P(brother->rb_left)
|
|||
|
&& RB_BLACK_P(brother->rb_right)) {
|
|||
|
if (RB_RED_P(brother)) {
|
|||
|
/*
|
|||
|
* Case 1: Our brother is red, swap its
|
|||
|
* position (and colors) with our parent.
|
|||
|
* This should now be case 2b (unless C or E
|
|||
|
* has a red child which is case 3; thus no
|
|||
|
* explicit branch to case 2b).
|
|||
|
*
|
|||
|
* B -> D
|
|||
|
* A d -> b E
|
|||
|
* C E -> A C
|
|||
|
*/
|
|||
|
__archive_rb_tree_reparent_nodes(parent, other);
|
|||
|
brother = parent->rb_nodes[other];
|
|||
|
} else {
|
|||
|
/*
|
|||
|
* Both our parent and brother are black.
|
|||
|
* Change our brother to red, advance up rank
|
|||
|
* and go through the loop again.
|
|||
|
*
|
|||
|
* B -> *B
|
|||
|
* *A D -> A d
|
|||
|
* C E -> C E
|
|||
|
*/
|
|||
|
RB_MARK_RED(brother);
|
|||
|
if (RB_ROOT_P(rbt, parent))
|
|||
|
return; /* root == parent == black */
|
|||
|
which = RB_POSITION(parent);
|
|||
|
parent = RB_FATHER(parent);
|
|||
|
continue;
|
|||
|
}
|
|||
|
}
|
|||
|
/*
|
|||
|
* Avoid an else here so that case 2a above can hit either
|
|||
|
* case 2b, 3, or 4.
|
|||
|
*/
|
|||
|
if (RB_RED_P(parent)
|
|||
|
&& RB_BLACK_P(brother)
|
|||
|
&& RB_BLACK_P(brother->rb_left)
|
|||
|
&& RB_BLACK_P(brother->rb_right)) {
|
|||
|
/*
|
|||
|
* We are black, our father is red, our brother and
|
|||
|
* both nephews are black. Simply invert/exchange the
|
|||
|
* colors of our father and brother (to black and red
|
|||
|
* respectively).
|
|||
|
*
|
|||
|
* | f --> F |
|
|||
|
* | * B --> * b |
|
|||
|
* | N N --> N N |
|
|||
|
*/
|
|||
|
RB_MARK_BLACK(parent);
|
|||
|
RB_MARK_RED(brother);
|
|||
|
break; /* We're done! */
|
|||
|
} else {
|
|||
|
/*
|
|||
|
* Our brother must be black and have at least one
|
|||
|
* red child (it may have two).
|
|||
|
*/
|
|||
|
if (RB_BLACK_P(brother->rb_nodes[other])) {
|
|||
|
/*
|
|||
|
* Case 3: our brother is black, our near
|
|||
|
* nephew is red, and our far nephew is black.
|
|||
|
* Swap our brother with our near nephew.
|
|||
|
* This result in a tree that matches case 4.
|
|||
|
* (Our father could be red or black).
|
|||
|
*
|
|||
|
* | F --> F |
|
|||
|
* | x B --> x B |
|
|||
|
* | n --> n |
|
|||
|
*/
|
|||
|
__archive_rb_tree_reparent_nodes(brother, which);
|
|||
|
brother = parent->rb_nodes[other];
|
|||
|
}
|
|||
|
/*
|
|||
|
* Case 4: our brother is black and our far nephew
|
|||
|
* is red. Swap our father and brother locations and
|
|||
|
* change our far nephew to black. (these can be
|
|||
|
* done in either order so we change the color first).
|
|||
|
* The result is a valid red-black tree and is a
|
|||
|
* terminal case. (again we don't care about the
|
|||
|
* father's color)
|
|||
|
*
|
|||
|
* If the father is red, we will get a red-black-black
|
|||
|
* tree:
|
|||
|
* | f -> f --> b |
|
|||
|
* | B -> B --> F N |
|
|||
|
* | n -> N --> |
|
|||
|
*
|
|||
|
* If the father is black, we will get an all black
|
|||
|
* tree:
|
|||
|
* | F -> F --> B |
|
|||
|
* | B -> B --> F N |
|
|||
|
* | n -> N --> |
|
|||
|
*
|
|||
|
* If we had two red nephews, then after the swap,
|
|||
|
* our former father would have a red grandson.
|
|||
|
*/
|
|||
|
RB_MARK_BLACK(brother->rb_nodes[other]);
|
|||
|
__archive_rb_tree_reparent_nodes(parent, other);
|
|||
|
break; /* We're done! */
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
struct archive_rb_node *
|
|||
|
__archive_rb_tree_iterate(struct archive_rb_tree *rbt,
|
|||
|
struct archive_rb_node *self, const unsigned int direction)
|
|||
|
{
|
|||
|
const unsigned int other = direction ^ RB_DIR_OTHER;
|
|||
|
|
|||
|
if (self == NULL) {
|
|||
|
self = rbt->rbt_root;
|
|||
|
if (RB_SENTINEL_P(self))
|
|||
|
return NULL;
|
|||
|
while (!RB_SENTINEL_P(self->rb_nodes[direction]))
|
|||
|
self = self->rb_nodes[direction];
|
|||
|
return self;
|
|||
|
}
|
|||
|
/*
|
|||
|
* We can't go any further in this direction. We proceed up in the
|
|||
|
* opposite direction until our parent is in direction we want to go.
|
|||
|
*/
|
|||
|
if (RB_SENTINEL_P(self->rb_nodes[direction])) {
|
|||
|
while (!RB_ROOT_P(rbt, self)) {
|
|||
|
if (other == RB_POSITION(self))
|
|||
|
return RB_FATHER(self);
|
|||
|
self = RB_FATHER(self);
|
|||
|
}
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* Advance down one in current direction and go down as far as possible
|
|||
|
* in the opposite direction.
|
|||
|
*/
|
|||
|
self = self->rb_nodes[direction];
|
|||
|
while (!RB_SENTINEL_P(self->rb_nodes[other]))
|
|||
|
self = self->rb_nodes[other];
|
|||
|
return self;
|
|||
|
}
|